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Introduction

Femtosecond laser pulses
_‘_—} are tightly focused inside a
transparent sample.

These pulses produce a highly-excited plasma that is confined to a
micrometer-sized region. This tight confinement of extreme conditions
is the hallmark of our work.

Due to the short pulsewidth and tight focusing, the
intensity in the focal volume is in excess of 10 W/cm?.
The laser can be focused beneath the surface of the
material, so this high intensity can be concentrated in
the bulk, rather than at the surface
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intensiy at laser focus

The high intensity leads to absorption of the laser
N =2 energy through non-linear processes. The resultis a
\g EmLy . micrometer-sized, highly-excited plasma, trapped

l inside the material.
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The hot plasma rapidly expands into the surrounding
material, producing a microscopic explosion — a
See the Dynamics section.

pressure wave in water at 35 ns

In solid materials, a microexplosion leaves behind a
sub-micron-sized region of permanent damage — a

microstructure. See the Microsiruciures section.
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MicroexplosiG=—Dynamics

Using time-resolved imaging and scattering measurements, we monitor
the evolution of a microexplosion following excitation.
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Time-resolved scattering
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Results

« the rapid expansion velocity (> 30 km/s) from 20 ps to 200 ps
indicates high temperature and pressure characterize the plasma

« after reaching a radius of 7 um, all subsequent dynamics are
acoustic or slower

« extreme conditions confined to micrometer scales

Microstructures

Using optical and electron microscopy, we examine the damage
structures produced by microexplosions in bulk materials.
Optical microscopy
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Electron microscopy
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Results

« microstructures with a 150-nm diameter have been produced
— self-focusing reduces the beam waist at the focus

« large An (> 5%) between damaged and undamaged material

Thresholds

Using scattering techniques in solids and acoustic detection in water, we
measure the microexplosion threshold in a variety of materials.
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+ 100-fs thresholds similar for many different materials.
« plasma and permanent damage produced well below the threshold
for the changes described in the Microstructures section.

three-dimensional binary data storage

In applications we make use of the
micrometer-scale confinement of
extreme conditions. Examples are
three-dimensional microstructuring
and laser surgery.

« small damage size,localized in
three dimensions means high
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