
Introduction
Femtosecond laser pulses 
are tightly focused inside a 
transparent sample.

Due to the short pulsewidth and tight focusing, the 
intensity in the focal volume is in excess of 1014 W/cm2. 
The laser can be focused beneath the surface of the 
material, so this high intensity can be concentrated in 
the bulk, rather than at the surface.

see also:
http://mazur-www.harvard.edu
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Microexplosion Dynamics

Using time-resolved imaging and scattering measurements, we monitor 
the evolution of a microexplosion following excitation.

Applications

Time-resolved imaging

Time-resolved scattering

Ask to see the movie!

Microstructures
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Optical microscopy

Using optical and electron microscopy, we examine the damage 
structures produced by microexplosions in bulk materials.

Electron microscopy

We thank Eli N. Glezer and André Brodeur for help with the experiments. This work was supported, in 
part, by MRSEC seed funding from the National Science Foundation.

Thresholds

material

glass (BK7)

fused silica

quartz

sapphire

water

100 fs plasma
formation (µJ)

0.04

0.06

0.08

0.07

0.04

200 ps plasma
formation (µJ)

0.9

1.7

2.9

1/N 

2.0

100 fs permanent
damage (µJ)

0.07

0.08

0.08

0.1

N/A

200 ps permanent
damage (µJ)

1.2

1.8

2.9

1/N

N/A

The high intensity leads to absorption of the laser 
energy through non-linear processes. The result is a 
micrometer-sized, highly-excited plasma, trapped 
inside the material.

In solid materials, a microexplosion leaves behind a 
sub-micron-sized region of permanent damage — a 
microstructure. See the Microstructures section.

The threshold for producing a microexplosion are 
remarkably similar for a wide variety of transparent 
materials. See the Thresholds section.
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Using scattering techniques in solids and acoustic detection in water, we 
measure the microexplosion threshold in a variety of materials.
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• the rapid expansion velocity (> 30 km/s) from 20 ps to 200 ps 
indicates high temperature and pressure characterize the plasma

• after reaching a radius of 7 µm, all subsequent dynamics are 
acoustic or slower

• extreme conditions confined to micrometer scales
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Solid samples

Water

• 100-fs thresholds similar for many different materials.
• plasma and permanent damage produced well below the threshold 
for the changes described in the Microstructures section.

2-µm spaced binary data pattern
100-fs, 0.5-µJ pulses

LASER

• small damage size, localized in 
three dimensions means high 
data density

• high contrast means fast, easy, 
parallel readout

three-dimensional binary data storage

• femtosecond pulses produce less collateral effects than longer pulses
• we have demonstrated damage 600 µm beneath the surface in pig skin

100 fs, 4 µJ
200 ps, 40 µJ 100 fs, 40 µJ

100 fs, 20 µJ

surface incision sub-surface damage
surface ablation: 200 ps and 100 fs

histology of 
damage in a 
human skin 
model

photodisruptive microsurgery

In applications we make use of the 
micrometer-scale confinement of 
extreme conditions. Examples are 
three-dimensional microstructuring 
and laser surgery.
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These pulses produce a highly-excited plasma that is confined to a 
micrometer-sized region. This tight confinement of extreme conditions 
is the hallmark of our work.

scattering = scattering coefficient × cross-sectional area
~ plasma density and plasma size

the similarity of the radius vs. time and scattering vs. time 
data suggests the scattered intensity is determined 
primarily by the plasma size
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The hot plasma rapidly expands into the surrounding 
material, producing a microscopic explosion — a 
microexplosion. See the Microexplosion Dynamics section.

• microstructures with a 150-nm diameter have been produced
— self-focusing reduces the beam waist at the focus

• large ∆n (> 5%) between damaged and undamaged material
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