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Motivation

Direct laser writing gives flexibility in 3-D
- Direct 3-D rather than stacking 2-D layers

- Complex 3-D structures

No clean-room processing necessary

Rapid prototyping (no masks)
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Femtosecond Laser Micromachining

Complex free-standing 3-D structures fabricated using 
multi-photon polymerization

Adv. Funct. Mater. 2010,20, 1038–1052 http://www.nanoscribe.de/en/applications/mi-
cro-rapid-prototyping/



Femtosecond Laser Micromachining

Disconnected silver structures fabricated in a 
transparent polymer matrix

APPLIED PHYSICS LETTERS 100, 063120 (2012)
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Minimum feature size: <100 nm
Minimum feature separation: 500 nm
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3-D Gratings

Disconnected metal structures enable analogs of atomic lattices
Below: example schematics and image of a single fabricated layer
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3-D Gratings

Diffraction experiment schematic

633 nm HeNe camera

sample screen

rotation stage

+ 60˚

beam block 
for 0th   order

– 60˚
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3-D Gratings

Grating efficiency approximately 5%

Complex 3-D grating geometries are possible

Some discrepancy between theory and 
experiment
- Non-ideal, oblong scatterers
- Shadowing effects by large scatterers
- Fabrication variations
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Flat lenses (zone plates) Pinholes
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Silver structures

Unaltered polymer
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Imaging the focus of a 
light source

Imaging a compound LED

10 μm



Diffraction Optics

Shifting the microscope focus from the zone plate through its focal 
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Diffraction Optics

Shifting the microscope focus from the zone plate through its focal 
point for different wavelengths under broadband illumination
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Diffraction Optics

Stacked elements allow for wavelength selection from a white light 
source, based on separation in the z-direction

White light incident from below



Diffraction Optics

Stacked elements allow for wavelength selection from a white light 
source, based on separation in the z-direction

Zone plate - pinhole 
separation 55 μm

Zone plate - pinhole 
separation 70 μm
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Conclusion

Developed a laser fabrication technique to 
produce 3-D diffraction optics structures

Work toward demonstrating lab-on-a-chip 
applications
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