Manipulating Light at the Nanoscale

NATO-ASI Summer school on Nano-Optics: Principles Enabling Basic Research And Applications Centro Ettore Majorana Erice, Italy, 8–9 July 2015

Manipulating Light at the Nanoscale

@eric_mazur

NATO-ASI Summer school on Nano-Optics: Principles Enabling Basic Research And Applications Centro Ettore Majorana Erice, Italy, 8–9 July 2015

for a copy of these slides:

http://ericmazur.com

Outline

- optical properties of materials
- dispersion of pulses
- nonlinear optics
- waveguiding
- engineering the index

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

and so:

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

and so:

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$
$$P^{(2)} \approx P^{(1)} \text{ when } E = E_{at} \approx \frac{e}{a} \text{, and so } \chi^{(n)} \approx \frac{\chi^{(1)}}{E_{at}^{n-1}}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Invert all vectors:

$$-\vec{P}^{(2)} = \chi^{(2)}:(-\vec{E})(-\vec{E})$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Invert all vectors:

$$-\vec{P}^{(2)} = \chi^{(2)}:(-\vec{E})(-\vec{E})$$

and so $\chi^{(2)} = -\chi^{(2)} = 0$.

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Physical interpretation:

Can also cause frequency mixing!

Can also cause frequency mixing! Let

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t}$$

Can also cause frequency mixing! Let

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t}$$

Second-order polarization will contain terms with

 $2\omega_1$ (SHG), $2\omega_2$ (SHG), $\omega_1 + \omega_2$ (SFG), $\omega_1 - \omega_2$ (DFG)

Can also cause frequency mixing! Let

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t}$$

Second-order polarization will contain terms with

$$2\omega_1$$
 (SHG), $2\omega_2$ (SHG), $\omega_1 + \omega_2$ (SFG), $\omega_1 - \omega_2$ (DFG)

Physical interpretation:

Linear response:

$$\vec{P} = \chi \vec{E}$$

Linear response:

$$\vec{P} = \chi \vec{E}$$

Nonlinear response:

$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)}E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

٠

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

- Nonlinear response: $P^{(2)} = \chi^{(2)} E^2$
- Q: Silicon atoms are arranged in this way. Does bulk silicon generate second harmonic?

- 1. Yes, silicon is not centrosymmetric (as the unit cell shows)
- 2. No, the crystal as a whole is centrosymmetric
- 3. No, any radiation at the second harmonic is absorbed
- 4. Other

- Nonlinear response: $P^{(2)} = \chi^{(2)} E^2$
- Q: Silicon atoms are arranged in this way. Does bulk silicon generate second harmonic?

- 1. Yes, silicon is not centrosymmetric (as the unit cell shows)
- 2. No, the crystal as a whole is centrosymmetric
- 3. No, any radiation at the second harmonic is absorbed
- 4. Other

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)}E(t)E^*(t)E(t) = \chi^{(3)}I(t)E(t)$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)} E(t) E^*(t) E(t) = \chi^{(3)} I(t) E(t)$$

and so

50
$$P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)}E(t)E^{*}(t)E(t) = \chi^{(3)}I(t)E(t)$$

and so

$$P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$$

$$n = \sqrt{\epsilon} = \sqrt{1 + \chi_{eff}} \approx \sqrt{1 + \chi^{(1)}} + \frac{1}{2} \frac{\chi^{(3)}I}{\sqrt{1 + \chi^{(1)}}} = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

Phase:

 $\frac{\phi}{2\pi} = \frac{nL}{\lambda}$

$$\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$$

dt

Phase:
$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$
 $\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$
Frequency change: $\Delta \omega = -\frac{d\phi}{dt}$

Phase:
$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$
 $\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$
Frequency change: $\Delta \omega = -\frac{d\phi}{dt}$

- **Q:** Sketch the time dependence of the frequency shift for a Gaussian pulse and determine which is true (assume $n_2 > 0$):
 - 1. Leading edge is blue shifted, trailing edge red shifted
 - 2. Leading and trailing edge blue shifted, center red shifted
 - 3. Leading edge is red shifted, trailing edge blue shifted
 - Leading and trailing edge red shifted, center blue shifted
 Other

Phase:
$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$
 $\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$
Frequency change: $\Delta \omega = -\frac{d\phi}{dt}$

Q: Sketch the time dependence of the frequency shift for a Gaussian pulse and determine which is true (assume $n_2 > 0$):

1. Leading edge is blue shifted, trailing edge red shifted

- 2. Leading and trailing edge blue shifted, center red shifted
- 3. Leading edge is red shifted, trailing edge blue shifted 🖌

Leading and trailing edge red shifted, center blue shifted
 Other

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

$$=\frac{2\pi}{\lambda}L(n_o+n_2I)$$

Frequency change:

$$\Delta \omega = -\frac{d\phi}{dt} = \frac{-2\pi}{\lambda} Ln_2 \frac{dI}{dt}$$

Φ

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

self-focusing

but susceptibility is complex!

susceptibility	real part	imaginary part
linear	refraction	absorption
nonlinear	SHG, SFG, DFG, THG,	multiphoton absorption

$$\alpha = \alpha_o + \beta I + \gamma I^2 + \dots$$

Key points

- at high intensities, polarization no longer proportional to E
- nonlinearity can produce radiation at new frequencies
- nonlinearity causes index to depend on instensity of pulse

Outline

- optical properties of materials
- dispersion of pulses
- nonlinear optics
- waveguiding
- engineering the index

two crossed planar waves...

Waveguiding

... cause an interference pattern

Waveguiding

E = 0 on the nodal lines

Waveguiding

...satisfying boundary conditions for planar-mirror waveguide

transverse standing wave, traveling along axis

transverse standing wave, traveling along axis

change angle of incident waves...

change angle of incident waves...

change angle of incident waves...

boundary conditions only satisfied for certain θ

standing wave in y-direction, traveling in z-direction

consider wave incident at angle θ

twice-reflected wave

self consistency:

$$AC - AB = 2d \sin \theta = m\lambda \quad (m = 1, 2,)$$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 $(m = 1, 2,)$
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 $(m = 1, 2,)$
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 (m = 1, 2,)
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 $(m = 1, 2,)$
 $\sin\theta_m = m \frac{\lambda}{2d}$

number of modes:

$$M = \frac{2d}{\lambda}$$

now consider a planar dielectric waveguide

rays incident at angle $\theta > \pi/2 - \theta_c$ are unguided

rays incident at angle $\theta < \pi/2 - \theta_c$ are guided

rays incident at angle $\theta < \pi/2 - \theta_c$ are guided

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

SO:

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

1 10

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

number of modes:

$$M \doteq \frac{\sin(\pi/2 - \theta_c)}{\lambda/2d}$$

number of modes:

$$M \doteq \frac{\sin(\pi/2 - \theta_c)}{\lambda/2d}$$

or:

$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

propagation constant of guided wave:

$$\beta_m^2 = k^2 - k_y^2 = k^2 - \frac{m^2 \pi^2}{d^2}$$

group velocity:

$$v_m = c \cos \theta_m$$

single mode condition for 600-nm light:

planar mirror
$$M = \frac{2d}{\lambda}$$
 $300 < d < 600 \text{ nm}$

dielectric
$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$
 $d < 268 \text{ nm}$

single mode condition for 600-nm light:

planar mirror
$$M = \frac{2d}{\lambda}$$
 $300 < d < 600 \text{ nm}$

dielectric
$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$
 $d < 268 \text{ nm}$

can make *d* larger by making $n_1 - n_2$ smaller!

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = -i\omega\mu_o \nabla \epsilon \Phi$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = yu(x,y)e^{-i\beta z}$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta z}$$

yields:

$$\nabla_T^2 u + \left[-\beta^2 + \omega^2 \mu \epsilon(r)\right] u = 0$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta z}$$

yields:

$$\nabla_T^2 u + \left[-\beta^2 + \omega^2 \mu \epsilon(r)\right] u = 0$$

Compare to time-independent Schrödinger equation:

$$\nabla^2 \psi + \frac{2m}{\hbar^2} [E - V(r)] \psi = 0$$

single mode condition for 600-nm light:

$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

without cladding:

d < 268 nm

single mode condition for 600-nm light:

$$M \stackrel{\cdot}{=} 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

without cladding: d < 268 nm

Add cladding with 0.4% index difference:

 $d < 5 \ \mu m$

commercial single-mode fiber (Corning Titan[®])

operating wavelength: $\lambda = 1310 \text{ nm}/1550 \text{ nm}$

drawbacks of clad fibers:

weak confinement

no tight bending

Poynting vector profile for 200-nm nanowire

 $L = 4 \ \mu m$

Key points

- finite structures support a discrete set of modes
- each mode determined by boundary condition and extent
- each mode has unique field distribution
- modes unchanged as they propagage

Outline

- optical properties of materials
- dispersion of pulses
- nonlinear optics
- waveguiding
- engineering the index
how to optimize manipulation of light at nanoscale?

dielectric constant due to polarization of atoms

metal-dielectric composite

metal-dielectric composite

polarization of metal particles increases dielectric constant

provided $d \le \lambda_{eff}$ can use effective dielectric constant

can also do this with dielectric composite

what if we let $\varepsilon = 0$?

what if we let $\varepsilon = 0$?

if $\varepsilon = 0$, then n = 0!

Q: If n = 0, which of the following is true?

- 1. the frequency goes to zero.
- 2. the phase velocity becomes infinite.
- 3. both of the above.
- 4. neither of the above.

wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

wave equation

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

wave equation

solution

$$\vec{E} = \vec{E}_o \ e^{i (kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o \ e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

wave equation

solution

$$\vec{E} = \vec{E}_o \ e^{i (kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o \ e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c \longrightarrow \infty$$

Q: If n = 0, which of the following is true?

- 1. the frequency goes to zero.
- 2. the phase velocity becomes infinite.
- 3. both of the above.
- 4. neither of the above.

how?

$$n = \sqrt{\varepsilon \mu}$$

how?

$$n = \sqrt{\varepsilon \mu}$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

how?

$$n = \sqrt{\varepsilon \mu}$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

how?

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

how?

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow \infty$$
how?

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \longrightarrow 1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \longrightarrow \infty$$

how?

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

how?

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

how?

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \longrightarrow -1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

how?

$$\varepsilon, \mu \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \qquad \text{finite!}$$

but $\mu \neq 1$ requires a magnetic response!

How can we produce coupled *E* and *B*-fields?

but... metallic losses & not easily made in 3D

instead, use array of dielectric rods

incident electromagnetic wave ($\lambda_{eff} \approx d$)

produces an electric response...

... but different electric fields front and back...

...induce different polarizations on opposite sides...

...causing a current loop...

...which, in turn, produces an induced magnetic field

...which, in turn, produces an induced magnetic field

(but it's still a dielectric, so there's an electric response too!)

adjust design so electrical and magnetic resonances coincide

adjust design so electrical and magnetic resonances coincide

(adjustable parameters: n, d, and a)

at design wavelength (1590 nm)

below design wavelength (1530 nm)

above design wavelength (1650 nm)

SU8 slab waveguide

prism

Si waveguide

SU8 calibration waveguide

Wavelength dependence of index

Wavelength dependence of index

unambiguous demonstration of on-chip zero-index material!

Q: What happens when a beam of light at the wavelength for which n = 0 strikes a side of a zero-index prism at an angle away from the normal?

- 1. beats occur inside and around the prism.
- 2. the beam comes out at the same angle on the other facets.
- 3. the beam is perfectly reflected.
- 4. the beam is transmitted only for certain (nonzero) angles.
- 5. it couples perfectly, regardless of angle.

Q: What happens when a beam of light at the wavelength for which n = 0 strikes a side of a zero-index prism at an angle away from the normal?

- 1. beats occur inside and around the prism.
- 2. the beam comes out at the same angle on the other facets.
- 3. the beam is perfectly reflected.
- 4. the beam is transmitted only for certain (nonzero) angles.
- 5. it couples perfectly, regardless of angle.
Engineering the index

Key points

- tune optical properties using composite materials
- zero index requires a magnetic response
- produce magnetic response in dielectrics
- demonstrated on-chip impedance-matched *n* = 0

A very special thanks to

Phil Muñoz

Yang Li

Orad Reshef

Funding:

Air Force Office of Scientific Research Natural Sciences and Engineering Research Council of Canada Harvard Quantum Optics Center

for a copy of this presentation:

http://ericmazur.com

