Nanosecond laser annealing of hyperdoped black silicon

Benjamin Franta (Mazur Group, Harvard)

Hyperdoped black silicon

Fabrication

Strong optical absorptance

Photodetectors

Photovoltaics

Recent advances

Observing the intermediate band

Ertekin, E., M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi and J. C. Grossman (2012). "Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin." <u>Phys. Rev. Lett.</u> **108**.

Measuring the carrier lifetime

Sher, M.-J., et al., *Picosecond carrier recombination dynamics in chalcogenhyperdoped silicon.* Appl. Phys. Lett, 2014. **105**: p. 053905.

Measuring alpha and mu

Sher, M.-J., et al., *Picosecond carrier recombination dynamics in chalcogenhyperdoped silicon.* Appl. Phys. Lett, 2014. **105**: p. 053905. (Supplemental material and references therein.)

Calculating the figure of merit

Sher, M.-J., et al., *Picosecond carrier recombination dynamics in chalcogenhyperdoped silicon*. Appl. Phys. Lett, 2014. **105**: p. 053905.

Controlling resolidification velocity

Lin, Yu-Ting. 2014. Femtosecond-laser hyperdoping and texturing of silicon for photovoltaic applications. Doctoral dissertation, Harvard University.

Observing sub-bandgap photoresponse

Mailoa, J. P., et al. (2014). "Room-temperature sub-band gap optoelectronic response of hyperdoped silicon." <u>Nature Communications</u> **5**: 3011.

Outstanding challenges

The black silicon microstructure

Smith, M. J., M.-J. Sher, B. Franta, Y.-T. Lin, E. Mazur and S. Gradecak (2014). "Improving Dopant Incorporation During Femtosecond- Laser Doping of Si with a Se Thin-Film Dopant Precursor." <u>Applied Physics A</u> **114**(4): 1009-1016.

Thermal annealing causes deactivation

Newman, B. K., M.-J. Sher, E. Mazur and T. Buonassisi (2011). "Reactivation of subbandgap absorption in chalcogen-hyperdoped silicon." <u>Applied Physics Letters</u> **98**(25): 251905

Hitting the right dopant conc.

Sher, M.-J. et al. (2015). "Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: Dopant incorporation mechanism." <u>Journal of Applied Physics</u> **117**(12): 125301.

Nanosecond laser annealing

Obtain high crystallinity and optical absorptance

Benjamin Franta

David Pastor

Hemi Gandhi

Silvija Gradečak

Mike Aziz

Eric Mazur

After ns laser anneal (2.2 J/cm²)

Before ns laser anneal

Before ns laser anneal

Before ns laser anneal

After ns laser anneal (2.2 J/cm²)

Quantifying crystallinity

- Raman spectroscopy:
 - amorphous Si: broad transverse optical mode centered at 480 cm⁻¹.
 - crystalline Si: sharp optical mode at 520 cm $^{-1}$.
 - lattice stress and grain size: width of c-Si peak.

Quantifying crystallinity

- Raman spectroscopy:
 - amorphous Si: broad transverse optical mode centered at 480 cm⁻¹.
 - crystalline Si: sharp optical mode at 520 cm $^{-1}$.
 - lattice stress and grain size: width of c-Si peak.
- Quantification:
 - normalized a-Si signal: a-Si peak / c-Si peak.
 - FWHM of c-Si peak.
 - monocrystalline wafer used as baseline.

Quantifying crystallinity

Optical absorptance

Optical absorptance

Optical absorptance reactivation

Electrical

Need RTA for electrodes

After laser annealing, still a diode

• A lot of recent advances

- A lot of recent advances
 - Observing intermediate band, measuring carrier lifetime, alpha, mu, calculating figure of merit, controlling resolidification velocity (with fs laser), observing subbandgap photoresponse.

Outstanding challenges

- Outstanding challenges
 - Need the quality of hyperdoped flat Si with the absorptance of hyperdoped black Si.
 - Control crystallinity, optical absorptance, and dopant concentration at the same time.

- Nanosecond laser annealing
 - High crystallinity, high optical absorptance, diode behavior at the same time.

- Nanosecond laser annealing
 - High crystallinity, high optical absorptance, diode behavior at the same time.
- Next: need to control doping concentration in hyperdoped black silicon.

Thank you

Discussion

Extra slides

Next: Obtaining non-metallic hyperdoped black silicon

- Need to obtain <0.4 at. % doping concentration and strong optical absorptance at same time
 - Requirement for high-efficiency sub-bandgap devices, but has not yet been done
- Potential methods:
 - Nanosecond laser pulses to remove dopants from hyperdoped black silicon
 - Ablate hyperdoped skin off hyperdoped black silicon, then laser dope
 - Ablate hyperdoped skin off hyperdoped black silicon, then ion implant

