Wrapping light around a hair

Wrapping light around a hair

International Year of Light Lecture
Shude High School Foreign Language County
Chengdu, China, 22 December 2015

Limin Tong

Rafael Gattass

Geoff Svacha

Eric Mazur

and also....

at Harvard:

Jonathan Aschom
Mengyan Shen
Iva Maxwell
James Carey
Brian Tull
Dr. Yuan Lu
Dr. Richard Schalek
Prof. Federico Capasso
Prof. Cynthia Friend

at Zhejiang University:

Dr. Sailing He
Dr. Jingyi Lou
Xuewen Chen
Liu Liu
Zhanghua Han

Dr. Ray Mariella (LLNL)

D. Colladon, *La Nature*, 325 (1884)

W. WHEELER.

APPARATUS FOR LIGHTING DWELLINGS OR OTHER STRUCTURES.

No. 247,229. Patented Sept. 20, 1881.

US Patent 247, 229 (1881)

Outline

- waveguiding
- nanowire fabrication
- optical properties

how does water surface look from bottom?

from top partially transmitting!

water surface is perfect one-way mirror!

Why? Because light travels more slowly in water...

...making it bend as it crosses surface

At 'critical angle' bent ray travels along surface

Beyond 'critical angle': total internal reflection

seeing underwater

seeing underwater

seeing underwater

surface looks like mirror with a circular hole

now consider a planar dielectric waveguide

rays incident at angle $\theta > \pi/2 - \theta_c$ are unguided

Waveguiding

rays incident at angle $\theta < \pi/2 - \theta_c$ are guided

Waveguiding

Outline

two-step drawing process

standard fiber

1 µm

Nature, 426, 816 (2003)

Nanowire fabrication 200 µm

Nanowire fabrication 100 µm

312 nm

1µm

Waveguiding

Specifications

diameter D: down to 20 nm

length L: up to 90 mm

aspect ratio D/L: up to 10⁶

diameter uniformity $\Box D/L$: 2 x 10⁻⁶

240-nm wire

200 nm

RMS roughness < 0.5 nm

Nanowire fabrication bend to breaking point

Nanowire fabrication bend to breaking point

Nanowire fabrication bend to breaking point

Outline

coupling light into nanowires

fiber taper nanowire

coupling light into nanowires

coupling light into nanowires

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 600-nm nanowire

Poynting vector profile for 500-nm nanowire

Poynting vector profile for 400-nm nanowire

Poynting vector profile for 300-nm nanowire

Poynting vector profile for 200-nm nanowire

coupling light between nanowires

coupling light between nanowires

coupling light between nanowires

Optical properties 100 μm

Optical properties 100 μm

10 μm

Aerogel

density: 1.9 kg/m³

index of refraction: 1.03-1.08

Outlook 530 nm 50 μm

Outlook 420 nm 420 nm aerogel

nonlinear dispersion: $n = n_0 + n_2 I$

nonlinear dispersion: $n = n_0 + n_2 I$

nonlinear dispersion: $n = n_0 + n_2 I$

nonlinear dispersion: $n = n_o + n_2 I$

nonlinear dispersion: $n = n_o + n_2 I$

strong confinement \longrightarrow high intensity

Summary

- easy fabrication
- convenient nanoscale light manipulation
- nanoscale nonlinear optics

Funding:

Harvard Center for Imaging and Mesoscopic Structures
National Science Foundation
National Natural Science Foundation of China

for a copy of this presentation:

http://ericmazur.com

