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What does ‘zero index’ mean?
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Electric Field
In most materials (n > 1) the wavelength is short, compared to free space

n = 3
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As the index decreases, the wavelength increases…
n = 2
Electric Field
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n = 1

As the index decreases, the wavelength increases…
Electric Field
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n = 0.5

As the index decreases, the wavelength increases…
Electric Field
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n = 0.25
As the index decreases, the wavelength increases…
Electric Field
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at zero index, wavelength and phase velocity become infinite
n = 0
Electric Field
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A zero-index medium exhibits extreme properties.
infinite phase velocity

∞
0
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A zero-index medium exhibits extreme properties.
infinite phase velocity
zero k vector
(no momentum)
infinite wavelength
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A zero-index medium exhibits extreme properties.
infinite phase velocity
zero k vector
(no momentum)
infinite wavelength
zero phase advance
(no spatial distribution)
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Another extreme behaviour is revealed using Snell’s law:
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Another extreme behaviour is revealed using Snell’s law:
n1
n2
θ1
θ2
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Another extreme behaviour is revealed using Snell’s law:
n1
n2 = 0
θ1
θ2

0
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Another extreme behaviour is revealed using Snell’s law:
n1
n2 = 0
θ1
θ2
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Light can only enter when normal to a face of a 
zero-index medium.
n1
n2 = 0
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Conversely, light radiates normal to every face of a 
zero-index medium:


n1 = 0
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Conversely, light radiates normal to every face of a 
zero-index medium:
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Now that we’ve mostly gotten a handle of the unique behaviour of a zero-index material, how do we achieve it?
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Now that we’ve mostly gotten a handle of the unique behaviour of a zero-index material, how do we achieve it?
All we need is a material with a small real permittivity or permeability!
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Silver has an index near zero!
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Silver has an index near zero!

136,000 dB/cm
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Reflection (in air):
where
Also, importantly, we need to take impedance into account:
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Electric
Magnetic
To obtain a finite impedance, we need to tune both the effective permittivity ε and effective permeability μ.
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There actually is a way to engineer the effective permeability μ.
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(current loop)
There actually is a way to engineer the effective permeability μ.
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(current loop)
m
There actually is a way to engineer the effective permeability μ.
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Prof. Jason Valentine realized a free-space-accessible all-dielectric zero-index metamaterial at infrared frequencies.
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λ0 = 1590nm

n = 0
λ0 = 1650nm

n = -0.2
λ0 = 1530nm

n = 0.2
Ez
Ez
Ez
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I'm not going to go into specifics, but we have found a way to retain zero phase advance, even without metals
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ideal zero-index material
zero-index metamaterial
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Prof. Jason Valentine realized a free-space-accessible all-dielectric zero-index metamaterial at infrared frequencies.
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How do we achieve this “infinitely tall” 
zero-index structure in real life?
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Prof. Jason Valentine realized a free-space-accessible all-dielectric zero-index metamaterial at infrared frequencies.
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Previously demonstrated zero-index metamaterials:













1
Theory
2
Demonstration


45






1
Theory
2
Demonstration


46





1
Theory
2
Demonstration

Cross section
47





1
Theory
2
Demonstration


48





1
Theory
2
Demonstration


49





1
Theory
2
Demonstration


50






1
Theory
2
Demonstration


51








1
Theory
2
Demonstration


52



500 nm




53



500 nm
I




54



500 nm
I
II




55



500 nm
I
II
III




56



500 nm
I
IV
II
III




57


Importantly, this is easily integrable with standard silicon photonics.
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With such a design, we can achieve integrated zero-index metamaterials, efficiently coupled with standard silicon photonics.
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To better visualize the Dirac cone: 3D dispersion surfaces. The linear bands (blue) meet each other at the Dirac point and form the Dirac cone. Additionally, a quadratic band (red) crossing the Dirac point (is a quasi-longitudinal mode.)
63


On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism


Remember:
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On-chip zero-index prism
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On-chip zero-index prism
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On-chip zero-index prism

prism
input
   waveguide
output slab
waveguide
calibration waveguide


1
Theory
2
Demonstration


On-chip zero-index prism
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Wavelength dependence of refraction angle
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Wavelength dependence of refraction angle
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Wavelength dependence of refraction angle
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Wavelength dependence of refraction angle
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Wavelength dependence of refractive index
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Wavelength dependence of refractive index

n = 0
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Li, Y., Kita, S., et al. “On-chip zero-index
Metamaterials”, Nature Photon. 9 (2015)
mazur.harvard.edu
check us out at:
This work is available online:


1
Theory
2
Demonstration




Li, Y., Kita, S., et al. “On-chip zero-index
Metamaterials”, Nature Photon. 9 (2015)
mazur.harvard.edu
check us out at:
This work is available online:


What are the nonlinear properties?
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Recall from earlier:
infinite phase velocity
infinite wavelength
zero phase advance
(no spatial distribution)

∞
0
zero k vector
(no momentum)

0
 0

∞

 0
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Energy conservation

Momentum conservation




before
after



We will use a four-wave mixing (FWM) process:
before
after
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Energy conservation

Momentum conservation
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coherence length


If we do NOT have proper phase-matching, we still have SOME nonlinear signal – it just eventually cancels itself out.
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Energy conservation

Momentum conservation
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We set all the photons to be at or near a zero-index wavelength:
before
after
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Energy conservation

Momentum conservation




before
after



Since the photons have no momentum, we are phase-matched “for free” - in all directions.
before
after
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There’s an easy way to see this analytically:
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There’s an easy way to see this analytically:
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There’s an easy way to see this analytically:
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For a dispersionless material, we obtain some signal in all directions for a short enough interaction length.
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To study this question, we use a very powerful tool called nonlinear scattering theory.
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“detector”
dipole source





Linear scattering theory
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Nonlinear scattering theory
Nonlinear material
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Nonlinear Scattering Theory
Nonlinear material
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Nonlinear Scattering Theory
Nonlinear material
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“detector”
dipole source

Nonlinear Scattering Theory
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“detector”
dipole source
Nonlinear scattering theory is a numeric approach, 
agnostic of the structure of your nonlinear medium!
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Let’s verify it using a plane wave in a low index medium (n = 2).
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n = 2
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A plane wave is perfectly phase-matched when the generated nonlinear signal is propagating in the ‘forward’ direction.
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The nonlinear signal has the predicted coherence length when propagating in the ‘backward’ direction.
n = 2
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The nonlinear signal has the predicted coherence length when propagating in the ‘backward’ direction.
n = 2
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And the coherence length increases as expected with 
decreasing index:
n = 1
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And the coherence length increases as expected with 
decreasing index:
n = 0.5
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What happens if we use a bulk zero-index medium (n = 0.001)
in this calculation?
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For a bulk zero-index medium we have perfect phase-matching 
in both the forward and backward propagating directions.
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For a bulk zero-index medium we have perfect phase-matching 
in both the forward and backward propagating directions.



1
Theory
2
3
Demonstration
Nonlinear


Also perfect phase-matching in the lateral direction!
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What about for our zero-index structure?
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
122



Silicon pillars in air
Air holes in silicon

We have designed 2 new zero-index platforms in the meantime:
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
123



Silicon pillars in air
Air holes in silicon
We will repeat this calculation for the 2 new platforms:
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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2-D silicon rods:
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We repeat the same recipe, adding a column each time.
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We repeat the same recipe, adding a column each time.
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We repeat the same recipe, adding a column each time.
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We repeat the same recipe, adding a column each time.
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We obtain a phase-matched signal in all directions, 
a signature of a zero-index medium 
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We even obtain phase-matching when the interaction length increases laterally: 
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We even obtain phase-matching when the interaction length increases laterally: 
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2-D airholes:
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It also perfectly phase-matches in all directions! 
- almost.
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When normalized properly, we learn that the magnitude of the signal is not the same in all directions!
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This is because waves that propagate in different directions are formed of dipoles in different directions:






monopole
mode
dipole
mode
propagating mode
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This is because waves that propagate in different directions are formed of dipoles in different directions:






monopole
mode
dipole
mode
propagating mode


What is this property good for?
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Phase-conjugated mirror




Phase-conjugation
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Regular
mirror

Phase-conjugated mirror
Phase-conjugated mirrors are used to correct distortions or aberrations in an optical system.
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output
input
Nonlinear material
pump
pump
Phase-conjugation has been achieved using a third-order nonlinearity:
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Phase-conjugation due to a third-order nonlinearity is 
well-characterized, both theoretically and experimentally.
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Phase-conjugation due to a third-order nonlinearity is 
well-characterized, both theoretically and experimentally.
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Phase-conjugation due to a third-order nonlinearity is 
well-characterized, both theoretically and experimentally.
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ZIM
input
output
You can imagine replacing the nonlinear medium with a zero-index medium:
pump
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Summary
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We discussed the theory and properties zero-index media.
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We have demonstrated an integrated zero-index metamaterial.
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We have presented the unique phase-matching characteristics 
of this material for nonlinear applications.
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Alex Raymond







Thank you

mazur.harvard.edu
Li, Y., Kita, S., et al. “On-chip zero-index
Metamaterials”, Nature Photon. 9 (2015)
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