Less is more: Extreme optics with zero refractive index

Pontificia Universidad Católica de Chile Santiago, Chile, 12 January 2016

Less is more: Extreme optics with zero refractive index

Pontificia Universidad Católica de Chile Santiago, Chile, 12 January 2016

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

and
$$n=\sqrt{\epsilon\mu}$$
 .

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

 $\frac{1}{-c}$

n

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

 (\mathbf{i})

where
$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c =$$

and
$$n = \sqrt{\epsilon \mu}$$
 .

In dispersive media $n = n(\omega)$.

Lorentz oscillator

for a strong (dielectric) resonance ε can become negative

valence electrons in dielectric then behave like a plasma

with plasma frequency above the resonance

(and far below the UV region)

Index also determined by magnetic response

$$n = \sqrt{\boldsymbol{\omega}}$$

Index also determined by magnetic response

$$n = \sqrt{\boldsymbol{\omega}}$$

and magnetic response shows similar resonances

Magnetic response

but magnetic resonances occur below optical frequencies

Magnetic response

so, in optical regime, $\mu \approx 1$

Index of refraction

$$n = \sqrt{\epsilon \mu}$$

Both ϵ and μ are complex and their real parts can be negative.

Index of refraction

$$n = \sqrt{\epsilon \mu}$$

Both ϵ and μ are complex and their real parts can be negative.

What happens when $\operatorname{Re}\epsilon$ and/or $\operatorname{Re}\mu$ is negative?

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon| |\mu|} e^{i\frac{\theta + \phi}{2}}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon| |\mu|} e^{i\frac{\theta + \phi}{2}}$$

Q: Is this the only possible solution?

- **1. yes**
- 2. no, there's one more
- 3. there are many more
- 4. it depends

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add $2\pi\, {\rm to} \ {\rm exponent}$

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Im(*n*) n ϵ μ $\operatorname{Re}(n)$ n must lie here for passive material

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add $2\pi\, {\rm to} \ {\rm exponent}$

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\left| \mathcal{E} \right| \left| \mu \right|} e^{i \left[\frac{\theta + \phi}{2} + \pi \right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Im(*n*) E μ $\operatorname{Re}(n)$ must lie here for passive material

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Q: Is this the only possible solution?

To find *n* (passive materials):

- 1. Draw line that bisects ϵ and μ
- 2. Choose upper branch

For certain values of ϵ and μ we can get a *negative* $\operatorname{Re}(n)!$

Q: Must both $\operatorname{Re}\epsilon < 0$ and $\operatorname{Re}\mu < 0$

to get a negative index?

1. yes

2. no

1. yes

2. no 🖌

Note: need magnetic response

to achieve $n \le 0$!

Now remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Now remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Spatial and temporal dependence of wave component

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Now remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Spatial and temporal dependence of wave component

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

What happens on the axes?

what if we let $\varepsilon = 0$?

what if we let $\varepsilon = 0$?

Q: If n = 0, which of the following is true?

- 1. the frequency goes to zero.
- 2. the phase velocity becomes infinite.
- 3. both of the above.
- 4. neither of the above.

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c \longrightarrow \infty$$

Q: If n = 0, which of the following is true?

1. the frequency goes to zero.

2. the phase velocity becomes infinite. V

- 3. both of the above.
- 4. neither of the above.

"tunneling with infinite decay length"

$$n = \sqrt{\varepsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$n = \sqrt{\epsilon \mu}$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \longrightarrow \infty$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \longrightarrow 1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \longrightarrow \infty$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \rightarrow -1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

$$\varepsilon, \mu \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \qquad \text{finite!}$$

but $\mu \neq 1$ requires a magnetic response!

use array of dielectric rods

incident electromagnetic wave ($\lambda_{eff} \approx a$)

produces an electric response...

... but different electric fields front and back...

...induce different polarizations on opposite sides...

...causing a current loop...

...which, in turn, produces an induced magnetic field

adjust design so electrical and magnetic resonances coincide

How to fabricate?

SU8 slab waveguide

Si waveguide

SU8 slab waveguide

prism

Si waveguide

at design wavelength (1590 nm)

below design wavelength (1530 nm)

above design wavelength (1650 nm)

On-chip zero-index prism

Wavelength dependence of index

Wavelength dependence of index

More extreme optics

- suppressing losses
- beam steering & supercoupling
- nonlinear optics
- quantum optics

on-chip zero-index material

uniform field inside material (infinite wavelength)

many exciting applications ahead!

november 2015 vol 9 Not www.nature.com/naturephotonics photophics

Zero-index metamaterials

PHASE-CHANGE MATERIALS Multi-level memory

MID-INFRARED SOURCES Powerful pulse train

OPTICAL COMPUTING Analog approach

More info: download paper!

The Team: Yang Li, Shota Kita, Orad Reshef, Philip Muñoz, Daryl Vulis, Marko Lončar

Funding: National Science Foundation

for a copy of this presentation:

http://ericmazur.com

