Less is more: Extreme optics with zero refractive index

Less is more: Extreme optics with zero refractive index

Trinity College Dublin, Ireland, 7 A pril 2016

Reflecting a Century of Innovation

Less is more: Extreme optics with zero refractive index

Trinity College Dublin, Ireland, 7 A pril 2016

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

and
$$n=\sqrt{\epsilon\mu}$$
 .

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

 $\frac{1}{-c}$

n

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

 (\mathbf{n})

where
$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}}c =$$

and
$$n = \sqrt{\epsilon \mu}$$
 .

In dispersive media $n = n(\omega)$.

$$n = \sqrt{\epsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

So $n(\omega)$ determined by response of material to external fields

 $\epsilon(\omega)$ measure of attenuation of electric field

$$n = \sqrt{\epsilon \mu}$$

Lorentz oscillator

for a strong (dielectric) resonance ε can become negative

valence electrons in dielectric then behave like a plasma

with plasma frequency above the resonance

(and far below the UV region)

Index also determined by magnetic response

$$n = \sqrt{\boldsymbol{\omega}}$$

Index also determined by magnetic response

$$n = \sqrt{\boldsymbol{\omega}}$$

and magnetic response shows similar resonances

Magnetic response

but magnetic resonances occur below optical frequencies

Magnetic response

so, in optical regime, $\mu \approx 1$

Index of refraction

$$n = \sqrt{\epsilon \mu}$$

Both ϵ and μ are complex and their real parts can be negative.

Index of refraction

$$n = \sqrt{\epsilon \mu}$$

Both ϵ and μ are complex and their real parts can be negative.

What happens when $\operatorname{Re}\epsilon$ and/or $\operatorname{Re}\mu$ is negative?

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\varphi}{2}}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\varphi}{2}}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n \neq \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\phi}{2}}$$

Q: Is this only possible value?

- 1. yes
- 2. no, there's one more
- 3. there are many more
- 4. it depends

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\left| \mathcal{E} \right| \left| \mu \right|} e^{i \left[\frac{\theta + \phi}{2} + \pi \right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add $2\pi\, {\rm to} \ {\rm exponent}$

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Im(*n*) n ϵ μ $\operatorname{Re}(n)$ n must lie here for passive material

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add $2\pi\, {\rm to} \ {\rm exponent}$

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\left| \mathcal{E} \right| \left| \mu \right|} e^{i \left[\frac{\theta + \phi}{2} + \pi \right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Im(*n*) E μ $\operatorname{Re}(n)$ must lie here for passive material

$$E = E_o e^{i(kx - \omega t)} = E_e e^{-k''x} e^{i(k'x - \omega t)}$$

Q: Is this the only possible value?

- 2. no, there's one more
- 3. there are many more
- 4. it depends

Q: Is this the only possible value?

1. yes 🖌

2. no, there's one more 🖌

3. there are many more

4. it depends

Q: Is this the only possible value?

1. yes 🖌

2. no, there's one more

3. there are many more

4. it depends 🖌

- Q: Is this the only possible value?
 - 1. yes 🖌
 - 2. no, there's one more
 - 3. there are many more
 - 4. it depends 🖌

To find *n* (passive materials):

- 1. Draw line that bisects ϵ and μ
- 2. Choose upper branch

What happens when $\operatorname{Re}\epsilon$ and/or $\operatorname{Re}\mu$ is negative?

For certain values of ϵ and μ we can get a *negative* $\operatorname{Re}(n)$!

Q: Must both $\operatorname{Re}\epsilon < 0$ and $\operatorname{Re}\mu < 0$

to get a negative Re(n)?

1. yes

2. no

Q: Must both $\operatorname{Re}\epsilon < 0$ and $\operatorname{Re}\mu < 0$

to get a negative Re(n)?

1. yes

2. no 🖌

However, need magnetic response

to achieve $\operatorname{Re}(n) \le 0!$

Remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

What about causality?

What about causality?

1 index

common materials very limited

common materials very limited

common materials very limited

What happens on the axes?

what if we let $\varepsilon = 0$?

what if we let $\varepsilon = 0$?

Q: If n = 0, which of the following is true?

- 1. the frequency goes to zero.
- 2. the phase velocity becomes infinite.
- 3. both of the above.
- 4. neither of the above.

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c \longrightarrow \infty$$

Q: If n = 0, which of the following is true?

1. the frequency goes to zero.

2. the phase velocity becomes infinite. V

- 3. both of the above.
- 4. neither of the above.

What can we do with uniform phase?

"tunneling with infinite decay length"

$$n = \sqrt{\varepsilon \mu}$$

$$n = \sqrt{\epsilon \mu}$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$n = \sqrt{\varepsilon \mu}$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \longrightarrow \infty$$

$$\varepsilon \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1} \longrightarrow 1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \longrightarrow \infty$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

$$\mu \to 0 \qquad \qquad n = \sqrt{\varepsilon \mu} \to 0$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1} \longrightarrow -1$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \longrightarrow 0$$

$$\varepsilon, \mu \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \qquad \text{finite!}$$

but $\mu \neq 1$ requires a magnetic response!

bulk material

properties derive from constituent atoms

bulk material

properties derive from constituent atoms

bulk material

composite material

properties derive from constituent atoms

properties derive from constituent units

bulk material

composite material

properties derive from constituent atoms

properties derive from constituent units

use array of dielectric rods

incident electromagnetic wave ($\lambda_{eff} \approx a$)

produces an electric response...

... but different electric fields front and back...

...induce different polarizations on opposite sides...

...causing a current loop...

...which, in turn, produces an induced magnetic field

adjust design so electrical and magnetic resonances coincide

adjustable parameters

d = 422 nm, *a* = 690 nm, *n* = 1.57 (SU8)

at design wavelength (1590 nm)

below design wavelength (1530 nm)

above design wavelength (1650 nm)

How to fabricate?

SU8 slab waveguide

Si waveguide

SU8 slab waveguide

prism

Si waveguide

$$n_{\rm prism} = n_{\rm slab} \frac{\sin \alpha}{\sin 45^\circ}$$

nature november 2015 vol 9 00 www.nature.com/naturephoton photophics

Zero-index metamaterials

More info: download paper!

PHASE-CHANGE MATERIALS Multi-level memory

MID-INFRARED SOURCES Powerful pulse train

OPTICAL COMPUTING Analog approach

Need to eliminate losses in metal mirrors

Removing mirrors causes radiative losses

Radiative losses can be steered...

Radiative losses can be steered...

... or arranged to cause focusing...

experiments

3

Yang Li, Shota Kita, Phil Muñoz, Orad Reshef, Daryl Vulis, Mei Yin, Lysander Christakis, Zin Lin, Cleaven Chia, Olivia Mello, Haoning Tang, Marko Lončar

> National Science Foundation Harvard Center for Nanoscale Systems

for a copy of this presentation:

http://ericmazur.com

