Microstructuring of bulk transparent solids using nanojoule femtosecond pulses

Chris B. Schaffer André Brodeur Nozomi Nishimura Eric Mazur

APS Centennial Meeting 23 March1999

high intensity at focus...

Glezer, et al., Opt. Lett. 21, 2023 (1996)

... causes nonlinear ionization...

Glezer, et al., Opt. Lett. 21, 2023 (1996)

and microscopic bulk damage

Glezer, et al., Opt. Lett. 21, 2023 (1996)

and microscopic bulk damage

with only tens of nanojoules!

Outline

- Damage morphology
- Thresholds
- Ionization mechanisms

how little energy produces permanent changes?

Bring in pump beam...

... block probe beam...

... and detect light scattered by damage

transmission of pump beam in fused silica

transmission of pump beam in fused silica

transmission of pump beam in fused silica

vary numerical aperture in Corning 0211

fit gives threshold intensity: $I_o = 2.7 \times 10^{17} \text{ W/m}^2$

other materials...

... give other thresholds

threshold increases with bandgap

what do thresholds tell about ionization?

laser field ionization

laser field ionization

impact ionization

impact ionization

threshold gives field ionization electron density

threshold gives field ionization electron density

need critical electron density to damage

for low bandgap field ionization is sufficient

for high gap impact ionization required

Summary

- damage with only nanojoules
- microstructuring without amplifiers
- transition from field to impact ionization

Funding: National Science Foundation

Acknowledgments: Prof. N. Bloembergen W. Leigh Carl Zeiss, Inc

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu