
If the molecules have
a preferred alignment
along the x-axis, the
symmetry allows six
independent and

nonvanishing components of χ

Consider the general case where the
monolayer is sandwiched between air and
water. The reflected SHG output is given
by
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In the DRLM setup, p-polarized light
is incident onto the monolayer almost
normal to the surface. The ref lected
light is imaged through a s-polarized
analyzer, which allows visualization of
the anisotropy of the monolayer.

A solution of 8AZ3 in chlorof orm
is spread on a subphase of
deionized water from a Millipore
Mill i-Q system. A 800-nm
ultrashort laser pulse is incident on
the interface at 45° angle. The SHG
signal is collected through a
interference fi lter by a photon
counting system. A He-Ne laser at
nearly normal incident is carefully
overlapped on the surface with the
800-nm beam. to image onto a
CCD camera.
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SHG signal depends on molecular
azimuthal and tilt angle. DRLP is
sensitive to the azimuthal angle of the
molecule. Since the 800-nm beam is
focused down to ~10 µm, which is on

the order of a single domain size, we
can measure the SHG from each
indiv idual domain. Combined, these
two techniques allow determination of
molecular orientation.

Liquid expanded phase

Liquid condensed phase

Assuming that the thickness of the fi lm
∆z <<λ, we can solve the dif ferential

equation approximately. For uniaxial
monolayers, the DRLM ref lectivi ty at
nearly normal incident takes the form

SHG signal f rom liquid condensed phase

SHG signal f rom liquid expanded phase

For 8AZ3, the average til t angle at the liquid condensed
phase is ~65°. For the liquid expanded phase, θ is ~59°.

We combined surface second harmonic
generation (SHG) with depolarized microscope
to study molecular orientation in a smectic-C
liqui d-crystal Langmuir monolayer at an
air/water interface. The molecules under
investigation are 4-octyl-4’-(3-
carboxytrimenthyleneoxy) azobenzene (8AZ3).
Monolayer exhibits a first-order phase transition
from liquid expanded (LE) to liquid condensed
phase (LC) with increasing surface pressure.

When polarized l ight is incident on an optically
anisotropic thin f ilm, the ref lection from the f ilm
includes information about the dielectric constants
and optic-axis directions. Using the Maxwell
equation and the 4×4 matrix f ormalism, we derived

the Fresnel formula. We write the Maxwell
equation in di fferential form,
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As a second-order nonlinear process, optical
SHG is highly surface specif ic.  The
polarization relates to the f ield as

P(2ω) = χi jkEjEk

Under the dipole approximation, χijk must

vanish in centro-symmetric materials.
However, at the interface the inversion
symmetry is  broken. This allows us to
probe surfaces with sub-monolayer
sensitiv ity. Consider a monolayer of
molecules with a second-order polarizability
αααα. Assuming local field effects are

negligible, the nonlinear susceptibil ity is
given by

χijk = Ns<Gijk>α lmn

where Ns is the density of molecules in the
monolayer. If αααα is dominated by a

component along the molecular axis ξ,

we can write χ in the simple form

χijk=Ns<(i ⋅ξ) (j⋅ξ)( k⋅ξ) >αξξξ

where I is the incident laser intensity, T
is the laser pulse width, and A is the
beam spot size. The ef fective nonl inear

susceptibili ty χ has the form

Specifically we have, f or the Sin/Sout
polarization setup

For Pin/Sout,

For Pin/Pout

SHG in tensi ty vs . molecular azimuthal a
( Sin /Pou t )
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SHG intensity vs . molecular azimuthal angle 
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We measure SHG as a fuction of Φ for dif ferent polarization

combinations. By fitting the data with the theoretical model, we
deduce all nonvanishing componentts of χ, and then determine

the parameters related to molecular orientation.
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