Quick as a flash: Observing Ultrafast Laser-Induced Dynamics in Semiconductors

Paul Callan Albert Kim Eric Mazur

University of Massachusetts at Lowell 21 April 1999

how do femtosecond laser pulses alter a solid?

photons excite valence electrons...

...and create free electrons...

... causing electronic and structural changes...

...which we measure with another pulse

thermal diffusion

structure

Outline

Method

Results

Discussion

Method

Method

short time scale

short time scale

dielectric function

short time scale

Х

structure

4 2 (A) 0 2 -2 -2

Г momentum

-4

bandstructure

short time scale

structure

dielectric function

short time scale

structure

oto

Г momentum Х

4

energy (eV) c 0 c

-4

*E*₁

bandstructure

short time scale

structure

bandstructure

short time scale

structure dielectric function bandstructure 40 4 0.70 *F_{th}* GaAs 30 dielectric function energy (eV) k 0 c 20 Ga 10 As 0 -10 _20∟ 0.0 -4 2.0 4.0 photon energy (eV) Х 6.0 Γ momentum

short time scale

D.H. Kim, et al., Sol. State Comm. 89, 119 (1994)

short time scale

electronic effects dominate at short time scales...

short time scale

...but they are not as simple as we used to think

long time scale, low fluence

long time scale, low fluence

carrier density down, electronic effects subsided...

long time scale, low fluence

...and lattice heats due to carrier relaxation

long time scale, low fluence

But... why do electronic effects disappear after 2 ps while lattice heats in 7 ps?

Auger lowers N without changing E in 2–4 ps...

...and highly excited electrons cool to lattice in 7 ps

long time scale, high fluence

long time scale, high fluence

gradual drop in gap \rightarrow not electronic effect

Summary

- measurement of ε(ω) identifies ultrafast phase changes
- initial response is electronic, via band structure and electron occupation changes
- structural effects dominate after a few ps

interesting reversible regime

Conclusions

strong electronic excitation can drive a structural transition

femtosecond lasers allow us to see the dynamics of the transition

Funding: National Science Foundation

Acknowledgments: Prof. N. Bloembergen Prof. H. Ehrenreich Prof. T. Kaxiras Prof. C. Klingshirn

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu