PEER INSTRUCTION: DISCUSSION AND "BRAINS-ON" DEMONSTRATION

Eric Mazur

University of British Columbia
21 May 1999

Why it works for students

- focuses students on understanding

Why it works for students

\triangleright focuses students on understanding
\triangleright gets students thinking

Why it works for students

Δ focuses students on understanding
\triangleright gets students thinking

- uncovers misunderstandings

Why it works for students

\triangleright focuses students on understanding
\triangleright gets students thinking

- uncovers misunderstandings
- builds confidence

Why it works for instructors

Why it w orks for instructors

Δ modification, not drastic change

Why it works for instructors

Δ modification, not drastic change

- adaptable

Why it w orks for instructors

\triangleright modification, not drastic change

- adaptable
- resources (http://galileo.harvard.edu)

Outline

\triangleright ConcepTests
\triangleright Feedback

- Problem with Problems
- Discussion

Question 1

Consider a rectangular metal plate with a circular hole in it.

Question 1

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases
2. stays the same
3. decreases

Message 1

It's easy to fire up the audience!

Question 2

A boat carrying a large boulder is floating on a lake. The boulder is throw n overboard and sinks to the bottom of the lake.

Question 2

A boat carrying a large boulder is floating on a lake. The boulder is throw n overboard and sinks to the bottom of the lake.

Does the level of the water in the lake (with respect to the shore)

1. go up,
2. go down, or
3. stay the same?

Message 2

We all make mistakes!

Question 3

Consider an object that floats in water but sinks in oil. When the object floats in water, half of it is submerged.

Question 3

Consider an object that floats in water but sinks in oil. When the object floats in water, half of it is submerged.

If we slowly pour oil on top of the
 water so it completely covers the object, the object

1. moves up.
2. stays in the same place.
3. moves down.

Message 3

It's easy to make simple demonstrations fascinating!

Question 4

When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left:

29miT »1oY w9И 9nT

Question 4

When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left:

29miT \ıoY w9И 9rIT

Why is it that right and left are interchanged and not top and bottom? Because

1. the mirror is oriented vertically,
2. we have two eyes in the horizontal plane,
3. the Earth's gravitation is directed dow nward,
4. a habit we have when looking at images in a mirror,
5. It only appears to run from left to right.

Message 4

It's "simple" only if you know the answer

Flashcards: simple and effective!

Feedback

Flashcards: simple and effective!

Feedback

Personal Response System (Varitronix, Hong Kong)

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Requires assumptions
Requires developing a model Requires applying that model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

How long do you have to wait before someone frees up a space?

Requires developing a model Requires applying that model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space?

Requires applying a (new) model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

$$
t_{\text {wait }}=\frac{T_{\text {shop }}}{N_{\text {spaces }}}
$$

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Requires using a calculator

$$
t_{\text {wait }}=\frac{T_{\text {shop }}}{N_{\text {spaces }}}
$$

Motivating students

- Suitable ConcepTests

Motivating students

- Suitable ConcepTests
\triangleright Rewards for participation

Motivating students

- Suitable ConcepTests
\triangleright Rew ards for participation
\triangleright Noncompetitive grading

Motivating students

- Suitable ConcepTests
\triangleright Rew ards for participation
\triangleright Noncompetitive grading
- Conceptual exam questions

Resources

Peer Instruction: A User's Manual (Prentice Hall, 1997)
http://galileo.harvard.edu

Funding

National Science Foundation

For a copy of this talk and additional information:
http://mazur-w w w.harvard.edu

