Microscopic bulk damage in dielectric materials using nanojoule femtosecond laser pulses

Chris B. Schaffer Andre Brodeur Eric Mazur

Harvard University Department of Physics

CLEO May, 1999

high intensity at focus

causes nonlinear ionization

producing microscopic bulk damage

producing microscopic bulk damage

with only tens of nanojoules!

producing microscopic bulk damage

with only tens of nanojoules!

producing microscopic bulk damage

with only tens of nanojoules!

why bulk?

why bulk?

three-dimensional micromachining

why bulk?

three-dimensional micromachining

why bulk?

three-dimensional micromachining

why bulk?

three-dimensional micromachining

why bulk?

three-dimensional micromachining

non-amplified micromachining

non-amplified micromachining

non-amplified micromachining

why nanojoules?

non-amplified micromachining

minimal self-focusing

why nanojoules?

non-amplified micromachining

minimal self-focusing

why nanojoules?

non-amplified micromachining

minimal self-focusing

Damage morphology

-

Damage morphology

8

-

• Thresholds

Damage morphology

2

-

Thresholds

Ionization mechanisms

top view

top view

40 nJ

side view

side view

100 fs 800 nm 1.4 NA Corning 0211

shot number and energy dependence

pump sample with femtosecond pulse

block probe beam

detect light scattered by damage

vary NA, material, pump wavelength

transmission of laser pulse as a function of energy

damage threshold corresponds to kink in transmission

self-focusing threshold much higher

threshold at several numerical apertures

fit gives intensity:
$$I_0$$
 = 2.5 $imes$ 10¹³ W/cm²

other materials

threshold intensity for various materials

bandgap dependence of threshold intensity

repeat experiment for frequency-doubled pulses

Keldysh parameter

 $\gamma = (\omega T) / 2^{1/2}$

 $\gamma > 1.5$ MPI $\gamma < 1.5$ tunneling

Keldysh parameter

$$\gamma = (\omega^2 \text{ m c n } \epsilon_0 \text{ E}_g / e^2 \text{ I})^{1/2}$$

 $\gamma > 1.5$ MPI $\gamma < 1.5$ tunneling

Keldysh parameter

$$\gamma = (\omega^2 \text{ m c n } \epsilon_0 \text{ E}_g / \text{ e}^2 \text{ I})^{1/2}$$

 $\gamma > 1.5$ MPI $\gamma < 1.5$ tunneling

material γ (800 nm)

CaF ₂	1.2
FS	1.2
0211	1.1
SF11	1.3

Keldysh parameter

$$\gamma = (\omega^2 \text{ m c n } \epsilon_0 \text{ E}_g / e^2 \text{ I})^{1/2}$$

 $\gamma > 1.5$ MPI $\gamma < 1.5$ tunneling

material γ (800 nm) γ (400 nm)

CaF ₂	1.2	2.1
FS	1.2	2.4
0211	1.1	2.6
SF11	1.3	

Keldysh parameter

$$\gamma = (\omega^2 \text{ m c n } \epsilon_0 \text{ E}_g / e^2 \text{ I})^{1/2}$$

 $\gamma > 1.5$ MPI $\gamma < 1.5$ tunneling

material γ (800 nm) γ (400 nm)

CaF ₂	1.2	2.1
FS	1.2	2.4
0211	1.1	2.6
SF11	1.3	

tunneling at 800 nm, MPI at 400 nm

calculate electron density produced by MPI and tunneling

calculate electron density produced by MPI and tunneling

800 nm critical density

400 nm critical density

tunneling or MPI sufficent at low gap

avalanche required at large gap

Material damage with less than 10 nJ

Bandgap and wavelength dependence of damage threshold

Material damage with less than 10 nJ

oscillator-only micromachining

Bandgap and wavelength dependence of damage threshold

Material damage with less than 10 nJ

oscillator-only micromachining

Bandgap and wavelength dependence of damage threshold

extend wavelength studies

W. Leight N. Nishimura Prof. N. Bloembergen Carl Zeiss, Inc.

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu/