Laser-Induced Microexplosions: creating stellar conditions on an optical bench

Chris B. Schaffer André Brodeur José Garcia Eric Mazur

Hong Kong University 23 October 1999

microstructuring of transparent materials

microstructuring of transparent materials

laser surgery

microstructuring of transparent materials

laser surgery

electronic and structural transitions

microstructuring of transparent materials

laser surgery

electronic and structural transitions

laser assisted chemistry

5 mm

1

a data sa at

focus laser beam inside material...

high intensity at focus...

... causes nonlinear ionization...

and microscopic bulk damage

laser field ionization

laser field ionization

avalanche ionization

avalanche ionization

Damage mechanisms:

- explosive
- thermal
- defect forming

Applications:

data storage

Applications:

data storage

Applications:

- data storage
- photonic devices

Applications:

- data storage
- photonic devices
- internal micromachining

Outline

Damage morphology

- Energy deposition
- **Dynamics**

more energy

٧

Electron Microscopy:

explosive damage forms voids

100 fs, 500 nJ 0.65 NA fused silica

summary of damage mechanisms

single shot	multiple shot (25 MHz)
-------------	---------------------------

low energy

high energy

summary of damage mechanisms

	single shot	multiple shot (25 MHz)
low energy		
high energy	explosive	

summary of damage mechanisms

	single shot	multiple shot (25 MHz)
low energy		thermal
high energy	explosive	

summary of damage mechanisms

	single shot	multiple shot (25 MHz)
low energy	?	thermal
high energy	explosive	

Outline

Damage morphology

Energy deposition

Dynamics
Determine threshold for damage:

- Optical microscopy
- Transmission
- Dark field scattering

optical microscopy

optical microscopy

6.6 nJ

transmission of pump beam in fused silica

Dark-field scattering

block probe beam...

...bring in pump beam...

...damage scatters probe beam

vary numerical aperture in Corning 0211

fit gives threshold intensity: $I_{th} = 2.5 \times 10^{17} \text{ W/m}^2$

vary material...

threshold increases with bandgap...

...but not very much

same trend at 400 nm

Outline

Damage morphology

Energy deposition

Dynamics

sapphire

3 µJ pulse

3.8 ns delay

40 µm radius

water ("self-healing")

1.0 µJ pulse

35 ns delay

58 µm radius

time-resolved scattering setup

signal proportional to area of scatterer

- submicron-scale bulk micromachining
- weak bandgap and wavelength dependence
- only a few nanojoules required

5-nJ threshold: unamplified micromachining

5-nJ threshold: unamplified micromachining

waveguide machining

waveguide machining

Photonic devices

- Photonic devices
- Wavelength-selective splitter

- Photonic devices
- Wavelength-selective splitter
- Photonic bandgap materials

- Propagation of pulses
- Mechanisms

Funding: National Science Foundation

Acknowledgments: Prof. Alex Gaeta (Cornell) Prof. Nico Bloembergen (Harvard) W. Leight Carl Zeiss, Inc

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu