Phase Changes and Microexplosions Caused by Femtosecond Laser Pulses

Paul Callan Albert Kim Chris B. Schaffer André Brodeur José Garcia Eric Mazur

University of Illinois 21 January 2000

microstructuring of transparent materials

microstructuring of transparent materials

laser surgery

microstructuring of transparent materials

laser surgery

electronic and structural transitions

microstructuring of transparent materials

laser surgery

electronic and structural transitions

laser assisted chemistry

how do femtosecond laser pulses alter a solid?

photons excite valence electrons...

...and create free electrons...

... causing electronic and structural changes...

...which we measure with another pulse

structure

Outline

Method

Results

Discussion

Summary

- measurement of ε(ω) identifies ultrafast phase changes
- initial response is electronic, via band structure and electron occupation changes
- structural effects dominate after a few ps

interesting reversible regime

Conclusions

strong electronic excitation can drive a structural transition

femtosecond lasers allow us to see the dynamics of the transition

focus laser beam inside material...

high intensity at focus...

... causes nonlinear ionization...

and microscopic bulk damage

Applications:

data storage

Applications:

data storage

Applications:

- data storage
- photonic devices

Applications:

- data storage
- photonic devices
- internal micromachining

What are the conditions at focus?

laser deposits energy in ~1 µm³

What temperature?
What temperature?

 $\Delta E = C_V \rho V \Delta T$

What temperature?

$$\Delta E = C_V \rho V \Delta T$$

$$C_V = 0.75 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$$

$$\rho = 2.2 \times 10^3 \text{ kg/m}^3$$

What temperature?

$$\Delta E = C_V \rho V \Delta T$$

$$C_V = 0.75 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$$

$$\rho = 2.2 \times 10^3 \text{ kg/m}^3$$

So, 1 μ J in 1 μ m³ gives

~1,000,000 K!

What pressure?

What pressure?

Treat ionized material as an ideal gas:

pV = nRT

What pressure?

Treat ionized material as an ideal gas:

$$pV = nRT$$

Gives

p = 10 MBar!

So:

	microexplosion	
Т	≈1 MK	
р	≈10 MBar	
ρ	$2.2 \times 10^3 \text{ kg/m}^3$	

So:

	microexplosion	sun
Т	≈1 MK	2–15 MK
р	≈10 MBar	
ρ	$2.2 \times 10^3 \text{ kg/m}^3$	$0.15 - 150 \times 10^3 \text{ kg/m}^3$

So:

	microexplosion	sun
Т	≈1 MK	2–15 MK
р	≈10 MBar	
ρ	$2.2 \times 10^3 \text{ kg/m}^3$	$0.15 - 150 \times 10^3 \text{ kg/m}^3$

creating stellar conditions in lab!

Electron Microscopy:

explosive damage forms voids

100 fs, 500 nJ 0.65 NA fused silica

SEM microscopy

200 nm

sapphire

3 µJ pulse

3.8 ns delay

40 µm radius

water ("self-healing")

1.0 µJ pulse

35 ns delay

58 µm radius

time-resolved scattering setup

signal proportional to area of scatterer

- submicron-scale bulk micromachining
- weak bandgap and wavelength dependence
- only a few nanojoules required

Funding: National Science Foundation

Acknowledgments: Prof. N. Bloembergen Prof. H. Ehrenreich Prof. T. Kaxiras Prof. C. Klingshirn

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu