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Sb-rich films of Ge and Sb are interesting for optical data storage

— can optically induce transformation from crystalline
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INTRODUCTION

Motivations to study phase transitions in GeSb films (GeSb)

Sb-rich films of Ge and Sb are interesting for optical data storage
— can optically induce transformation from crystalline

to amorphous phase
— AR/R is about 18%

Recently observed ultrafast disorder to order phase transition

— Sokolowski-Tinten et al. reported on crystallization within 200fs




INTRODUCTION

Crystalline vs amorphous phase of GeSb

Ge \
Sb ' }\
Gep.065D0.94

/
crystalline structure identical to amorphous phase is
pure Sb — solid solution of Ge in Sb stabilized by Ge atoms

R=67% R =55%




INTRODUCTION

Previous work hints at ultrafast crystallization
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EXPERIMENTAL TECHNIQUE
FS time resolved ellipsometry — FTRE

A GeSh
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pump pulse:
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— 0 = 50°

pump




EXPERIMENTAL TECHNIQUE

FTRE — first angle reflectivity spectrum

time delayed probe pulse:

— 1.7 — 3.5 eV (350nm — 750nm)
— <0.1pJ

— 0,=53°




EXPERIMENTAL TECHNIQUE

FTRE — second angle reflectivity spectrum

time delayed probe pulse:

— 1.7 — 3.5 eV (350nm — 750nm)
— <0.1pJ

— 0,=53°, 6,=80°




EXPERIMENTAL TECHNIQUE
FTRE — extracting the dielectric function

Reflectivity spectra
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EXPERIMENTAL TECHNIQUE

FTRE — extracting the dielectric function

Reflectivity spectra
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EXPERIMENTAL TECHNIQUE

FTRE — extracting the dielectric function

Reflectivity spectra Dielectric Function
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EXPERIMENTAL TECHNIQUE

FTRE — extracting the dielectric function

Reflectivity spectra ~ CW €llipsometry data  pjgjectric Function
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RESULTS

Evolution of g(w) after excitation at 1.6 F,, = 0.22 kJ/m?2
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Evolution of g(w) after excitation at 1.6 F,

1.6 F,
O0-1ps

£(w) gradually shifts
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RESULTS

Evolution of g(w) after excitation at 1.6 F,

1.6 F,
O0-1ps

£(w) gradually shifts
downwards

0fs
100 fs

= 02001 ¢(w) approaches c-GeSb
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RESULTS

Evolution of g(w) after excitation at 1.6 F,

1.6 F,
O0-1ps

£(w) gradually shifts
downwards

o0fs
A 100 fs

0 200 s £(w) approaches c-GeSb
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

1.6 Fq,
5-475ps

€(w) gradually shifts
downwards

£(w) approaches c-GeSb
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RESULTS

Evolution of g(w) after excitation at 1.6 F,

1.6 Fg,
5-475 ps

£(w) gradually shifts

downwards
5ps

£(w) approaches c-GeSb
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RESULTS

Evolution of g(w) after excitation at 1.6 F,

1.6 Fg,
5-475 ps

£(w) gradually shifts
downwards

£(w) approaches c-GeSb

g(w) reaches intermediate
state
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RESULTS

Evolution of g(w) after excitation at 1.6 F,

‘ 16 F,,
“‘ c-GeSb 5 -475 ps

£(w) gradually shifts

downwards
5 ps

20 ps
100 ps e(w) approaches c-GeSb

g(w) reaches intermediate
state

c
=
—
(@]
c
=
Y—
Q
S
+
O
Q@
2
©

state 1Is NOT c-GeSb

photon energy (eV)




RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,
O0-1ps

£(w) gradually shifts
downwards
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,
O0-1ps

£(w) gradually shifts

downwards
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F.,
O0-1ps

£(w) gradually shifts

downwards

0fs
100 fs

= 02001 e(w) reaches intermediate
state faster
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F.,
O0-1ps

£(w) gradually shifts

downwards

0fs
100 fs

= 02001 e(w) reaches intermediate
state faster

Intermediate state is fluence
independent - new phase
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,

0-1ps £(w) gradually shifts

downwards

0fs
100 fs

200 fs e(w) reaches intermediate
state faster

Intermediate state is fluence
independent - new phase
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,

5 - 475 ps £(w) gradually shifts

downwards
® o 5ps
£(w) reaches intermediate
state faster

Intermediate state is fluence
independent - new phase
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,
5-475ps

£(w) gradually shifts

downwards
5ps

£(w) reaches intermediate
state faster

Intermediate state is fluence
independent > new phase

\ ot dynamics at late time delays
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,
5-475 ps
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RESULTS

Evolution of g(w) after excitation at 4.0 F,

4.0 F,
5-475 ps

£(w) gradually shifts
downwards

£(w) reaches intermediate
state faster

Intermediate state is fluence
independent -» new phase

\., Re\’_ dynamics at late time delays
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ANALYSIS

Comparison with previous results

Given time
resolved g(w)
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resolved g(w) Formulae




ANALYSIS

Comparison with previous results

time zero
2.01 eV, 0°

crystalline

Given time Fresnel
resolved g(w) Formulae
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ANALYSIS

Comparison with previous results

time zero

time zero
2.01eV, 0° * 2.01eV,0°
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crystalline
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Excellent agreement at 2.01 eV and 0° angle of incidence.

Sokolowski-Tinten et al. PRL, 81, 3670 (1998)




ANALYSIS

Comparison with previous results

time zero
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For other parameters distinction of new phase from c-GeSb
becomes evident.

Sokolowski-Tinten et al. PRL, 81, 3670 (1998)
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CONCLUSION

New non-thermal phase of Ge-rich Sb films

No ultrafast disorder to order transition in GeSb

Femtosecond time-resolved ellipsometry is very
powerful tool for probing ultrafast phase changes
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