Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses

R. Younkin, J.E. Carey, J.A. Levinson, C. Crouch, C.M. Friend, E. Mazur

CLEO, Baltimore, MD May 11, 2001 Harvard University Cambridge, MA

Fabrication of conical microstructures

Optical properties of structures made in SF6

- high absorptance
- explanations

Structures made in other ambient gases

- morphology
- optical and optoelectronic properties

Si (111) placed in background of SF₆

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Irradiated silicon appears black

20 µm

 $4\,\mu m$

Optical properties

Ordinary silicon

Only wavelengths < 1.1 μm are absorbed

1-2 μm

10 - 12 μm

18 - 20 μm

Total integrated transmittance

Total integrated transmittance

What causes the absorption?

Why such high absorptance?

Microstructure shape can increase absorption

Why such high absorptance?

Secondary ion mass spectrometry

- High concentration of sulfur (~ 10²⁰ cm⁻³)
- Fluorine (~ 10¹⁷ cm⁻³)

Why such high absorptance?

Sulfur adds states in Si band gap

States in gap allow subgap absorption

Effects of different ambient gases

10 µm

Below band gap photocurrent

Below band gap photocurrent

Avalanche photodiode response at 1.3 μ m

Radiation Monitoring Devices, Watertown MA 02472

Conclusions

- Up to 90% infrared absorption
 increased infrared photocurrent
- Absorption dependent on ambient gas
- Applications in infrared photodetectors, silicon solar cells, other possible devices

R.M. Farrell, P. Gothoskar, A. Karger, Radiation Monitoring Devices, Watertown, MA

Li Zhao, Fudan University, Shanghai, China

funding: NSF, ARO

for more information, see: Appl. Phys. Lett. 78, 1850 (2001). http://mazur-www.harvard.edu

Reflectance

Reflectance

Transmittance

Transmittance

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

