Ultrafast Phase Transition Dynamics in GeSb Films

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, and E. Mazur Department of Physics and Division of Engineering & Applied Sciences Harvard University

J. Solis

Instituto de Optica, Madrid, Spain

Introduction

Motivation to study GeSb

Introduction

Motivation to study GeSb

Experimental Technique

Femtosecond time-resolved ellipsometry

Introduction

Motivation to study GeSb

Experimental Technique

Femtosecond time-resolved ellipsometry

Results

Time-resolved $\epsilon(\omega)$ of GeSb films

Introduction

Motivation to study GeSb

Experimental Technique

Femtosecond time-resolved ellipsometry

Results

Time-resolved $\epsilon(\omega)$ of GeSb films

Analysis

Comparison to previous results

Introduction

Motivation to study GeSb

Experimental Technique

Femtosecond time-resolved ellipsometry

Results

Time-resolved $\epsilon(\omega)$ of GeSb films

Analysis

Comparison to previous results

Conclusions

Motivations to study phase transitions in GeSb films

Applications in optical data storage

- optically induce transitions between crystalline and amorphous phases
- $-\Delta R/R \sim 18\%$

Motivations to study phase transitions in GeSb films

Applications in optical data storage

- optically induce transitions between crystalline and amorphous phases
- ΔR/R ~ 18%

Recently suggested ultrafast disorder-to-order phase transition

— Sokolowski-Tinten *et al.* reported on crystallization within 200fs

Amorphous and crystalline phases of GeSb

Ge_{0.06}Sb_{0.94}

amorphous phase is stabilized by Ge atoms $R \cong 55\%$

Amorphous and crystalline phases of GeSb

amorphous phase is stabilized by Ge atoms R ≅ 55% crystalline structure identical to pure Sb — solid solution of Ge in Sb $R \cong 67\%$

Amorphous and crystalline phases of GeSb

amorphous phase is stabilized by Ge atoms R ≅ 55% crystalline structure identical to pure Sb — solid solution of Ge in Sb $R \cong 67\%$

Previous work suggests ultrafast crystallization

Transient reflectivities at 2.01 eV and 0° angle of incidence

EXPERIMENTAL TECHNIQUE

Time-Resolved Ellipsometry

pump pulse: — 1.5 eV (800nm) — up to 500 μ J — $\theta_{pump} < \theta_1, \theta_2$ probe pulse:

 $-\theta_1 = 53^\circ, \theta_2 = 80^\circ$

— < 0.1 μJ

-1.7 - 3.5 eV (350 nm - 750 nm)

EXPERIMENTAL TECHNIQUE

Extracting the Dielectric Function

Reflectivity Spectra

EXPERIMENTAL TECHNIQUE

Extracting the Dielectric Function

Reflectivity Spectra

Numerically invert Fresnel formulae

Extracting the Dielectric Function

Numerically invert Fresnel formulae

Extracting the Dielectric Function

Numerically invert Fresnel formulae

Evolution of $\epsilon(\omega)$ after excitation of 1.6F_{cr}

Material does not achieve crystalline phase...

40 1.6 *F*_{cr} c-GeSb 0 – 5 ps 30 0 fs 100 fs 200 fs ♦ 1 ps 20 dielectric function a-GeSb 10 $\operatorname{Im} \varepsilon$ 0 Re ε -10 c-GeSb -20 └─ 1.5 2.0 2.5 3.0 3.5 photon energy (eV)

Evolution of $\epsilon(\omega)$ after excitation of 1.6F_{cr}

Material does not achieve crystalline phase...

Dynamics stop after 200fs.

Evolution of $\epsilon(\omega)$ after excitation of 1.6F_{cr}

Material does not achieve crystalline phase...

Dynamics stop after 200fs.

Electrons and lattice reach thermal equilibrium: little change in $\varepsilon(\omega)$.

Evolution of $\epsilon(\omega)$ after excitation of 1.6F_{cr}

Optical properties constant to ~ 0.5ns.

Evolution of $\epsilon(\omega)$ after excitation of $4.0F_{cr}$

Evolution of $\epsilon(\omega)$ after excitation of 4.0F_{cr}

Evidence of new non-thermal phase

Evolution of $\epsilon(\omega)$ after excitation of 4.0F_{cr}

Evidence of new non-thermal phase

Evolution of $\epsilon(\omega)$ after excitation of 4.0F_{cr}

Subsequent dynamics due to strong excitation

Signs of recrystallization

Evolution of $\epsilon(\omega)$ after excitation of $0.6F_{cr}$

Evolution of $\epsilon(\omega)$ after excitation of $0.6F_{cr}$

Material does not reach new phase for $F < F_{cr}$

Evolution of $\epsilon(\omega)$ after excitation of 0.6F_{cr}

Material does not reach new phase for $F < F_{cr}$

Evidence for transition in optically thin layer

Comparison with previous results

Comparison with previous results

Time-resolved $\epsilon(\omega)$

Comparison with previous results

ANALYSIS

Comparison with previous results

ANALYSIS

Comparison with previous results

Excellent agreement at 2.01 eV and 0° angle of incidence.

ANALYSIS

Comparison with previous results

For other parameters distinction of new phase from c-GeSb becomes evident.

CONCLUSION

New non-thermal phase of Sb-rich GeSb films

CONCLUSION

New non-thermal phase of Sb-rich GeSb films

No ultrafast disorder-to-order transition in GeSb

CONCLUSION

New non-thermal phase of Sb-rich GeSb films

No ultrafast disorder-to-order transition in GeSb

Femtosecond time-resolved ellipsometry is powerful tool for probing ultrafast phase changes

Dr. K. Sokolowski-Tinten Dr. Craig Arnold

This work can be found in J. P. Callan *et al.*, PRL, **86**, 3650 (2001)

For a copy of this talk and additional information, please visit

http://mazur-www.harvard.edu