Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon

James Carey

June 4, 2001

- fabrication
- optical properties

Field Emission

- background
- Fowler-Nordheim

Results

Discussion

irradiate with 100-fs 10 kJ/m² pulses

Fabrication setup

160 Fatal D ×2000 #3548 512 × 480 15mm 20PW -10kV 0000

- Sputter cones
 - Y. Fujimoto, M. Nozu, and F. Okuyama,
 - J. Appl. Phys. 77, 2725 (1995)
- Laser cones from ns-pulses

– D. Chrisey and G. Hubler, eds., *Pulsed Laser Deposition of Thin Films* (Wiley, NY, 1994), Ch. 4

– A.J. Pedraza, J.D. Fowlkes, and D.H. Lowndes, Appl. Phys. Lett. 74, 2322 (1999)

Absorptance

Absorptance

Absorptance

Absorptance

Multiple reflections

Important properties

- one step, maskless process
- large area with high density of microstructures
- band structure change

- fabrication
- optical properties

Field Emission

- background
- Fowler-Nordheim

Results

Discussion

Introduction

- fabrication
- optical properties

Field Emission

- background
- Fowler-Nordheim

Results

Discussion

Fowler-Nordheim

Time-independent Schrödinger equation

$$\frac{d^2 \psi}{dx^2} + \frac{2 m}{\hbar} [V(x) - E] \psi = 0$$

Transmission probability

Solution to Schrödinger eq. (WKB approximation)

$$\psi$$
 (x') = ψ (0) exp $\left(-\int_{0}^{x'} \mathbf{k}$ (x) dx\right)

Fowler–Nordheim

Transmission probability with this wavefunction

$$T (E) = \exp\left(-\int_{0}^{b} \sqrt{\frac{8 m}{\tilde{n}^{2}} [V (x) - E]} dx\right)$$
$$h = \frac{\phi - E}{h}$$

qF

Integrating

$$\mathbf{T} (\mathbf{E}) = \exp \left(-\frac{4 \sqrt{2 m}}{3 \hbar q F} (\phi - \mathbf{E})^{3/2}\right)$$

Fowler–Nordheim

The supply function N(E)dE

N (E) dE =
$$\frac{4 \pi m k_b T}{h^3} ln \left(1 + exp \left(-\frac{E - \mu}{k_b T}\right)\right) dE$$

Calculate the total current density j

$$j = \int_0^\infty eN(E) T(E) dE$$
$$j = \frac{e^3 F^2}{8 \pi h \phi} \frac{m_e}{m} exp\left(-\frac{4 \sqrt{2 m} \phi^{3/2}}{3 \hbar eF}\right)$$

Substituting in I = Aj and F = β V

$$I = \frac{Ae^{3}(\beta V)^{2}}{8 \pi h \phi} \frac{m_{e}}{m} \exp \left(-\frac{4 \sqrt{2 m} \phi^{3/2}}{3 \hbar e \beta V}\right)$$

Fowler-Nordheim

$$\ln(I/\Delta V^2) = \ln a - b(1/\Delta V)$$

R.H. Fowler and L. Nordheim, Proc. R. Soc. Lond. A (1928)

Introduction

- fabrication
- optical properties

Field Emission

- background
- Fowler-Nordheim

Results

Discussion

المراجع والمراجع والمراجع والمراجع ومراجع والمراجع والمراجع والمراجع ومراجع المراجع

المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

gold coating

20 μ m mica spacers

jula da kas kilala da kas kilala da kas kilala da kas kilala da kas ki

gold coating

anode

lah palas kiala palas kiala palas kiala palas kiala palas ki

gold coating

Results

Fowler–Nordheim plot

Emission properties

- turn-on field (1 μ A/cm²): 1.3 V/ μ m
- threshold field (10 μ A/cm²): 2.15 V/ μ m

Fowler–Nordheim plot

Fowler–Nordheim plot

Introduction

- fabrication
- optical properties

Field Emission

- background
- Fowler-Nordheim

Results

Discussion

Y.Y. Lau et al., Phys. Plasmas 1, 2082 (1994)

Y.Y. Lau et al., Phys. Plasmas 1, 2082 (1994)

Y.Y. Lau et al., Phys. Plasmas 1, 2082 (1994)

Y.Y. Lau et al., Phys. Plasmas 1, 2082 (1994)

Ion channeling and Rutherford backscattering

- surface retains crystalline order
- high density of defects

Secondary ion mass spectrometry (SIMS):

•
$$10^{20} \text{ cm}^{-3} \text{ sulfur}$$

• 10¹⁷ cm⁻³ fluorine

sulfur introduces states into the gap

Janzén, et al., Phys. Rev. B 29,1907 (1984)

sulfur introduces states into the gap

Micron-sized conical field-emitters

- fabricated by simple, maskless process
- can be integrated with microelectronics
- provides stable, high field-emission current
- are durable

Future directions

- Ordered arrays
- Other gases
- Functionalizing
- Electron energy and band structure studies

Acknowledgements

Rebecca Younkin, Mike Sheehy, Catherine Crouch, Josh Levinson, and the Mazur group

Li Zhao, Fudan University, Shanghai, China

funding: ARO, NSF, NDSEG

Fowler–Nordheim to Child–Langmuir

Fowler–Nordheim to Child–Langmuir

