Peer Instruction: Methods and Techniques

Suvendra Nath Dutta
IT Fellow, Mazur Group & DEAS IT Group
Division of Engineering & Applied Sciences
Harvard University

University of New Hampshire 22 July 2002

Outline

Problem

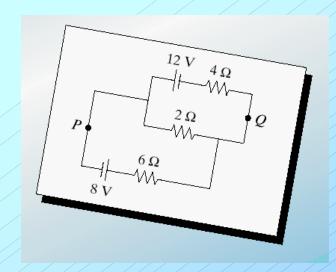
- ► Teaching focused towards top 1%
- Focused on memorization not understanding

Cause

- Lectures focused on fact transmission
- Traditional problems reinforce poor learning

Solution

► Interactive learning


Nature of problem

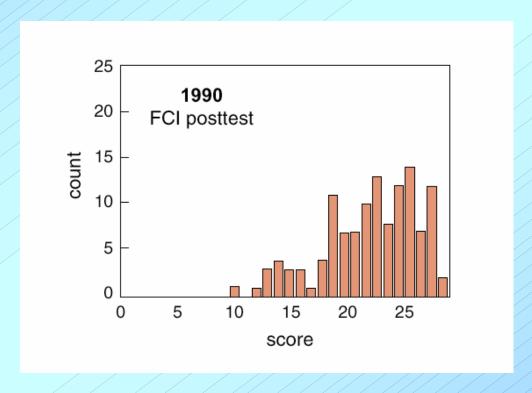
- ► In physics only 1% take more than their first physics course
- Looking at research common problems emerge:
 - ▶ Frustration
 - ► Lack of basic knowledge
 - Lack of understanding
- ▶But biggest problem of all:
 - ▶They don't care!

Why do we have this problem?

- ► Lectures focus on transfer of information
- Conventional questions reinforce poor studying habits

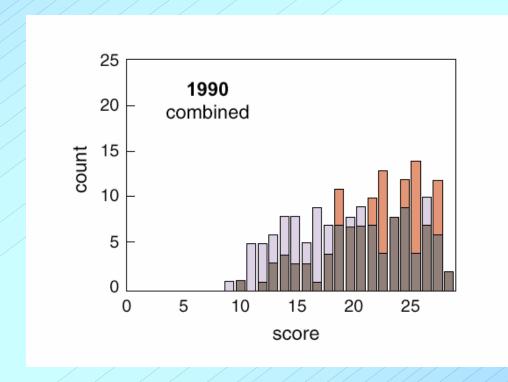
Q: Calculate current through the 2 Ω resistance ...

Why do we have this problem


Results of standardized test focusing on concepts rather than problems

Ref: D. Hestenes et al. 1992. The Phys. Teach. 30: 141-158.

Why do we have this problem


Results of standardized test focusing on concepts rather than problems

Ref: D. Hestenes et al. 1992. The Phys. Teach. 30: 141-158.

Why do we have this problem

Results of standardized test focusing on concepts rather than problems

Ref: D. Hestenes et al. 1992. The Phys. Teach. 30: 141-158.

What is the solution?

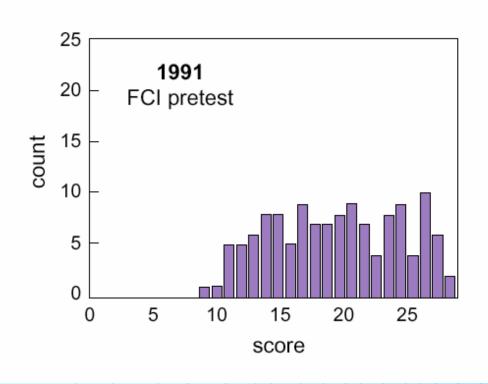
- Give students a reason to care
 - ▶ Take fact transmission out of classroom
 - Reading assignments! Reading assignments! Reading assignments!
 - ► Make lectures more responsive
 - ► Focus lectures on student's misunderstandings.
 - Uncover rather than cover
 - Make lectures more interactive
 - ► Make sure students are following teaching
 - ▶ Give students a more active role
 - ► Give them the opportunity to get the ah-hah feeling

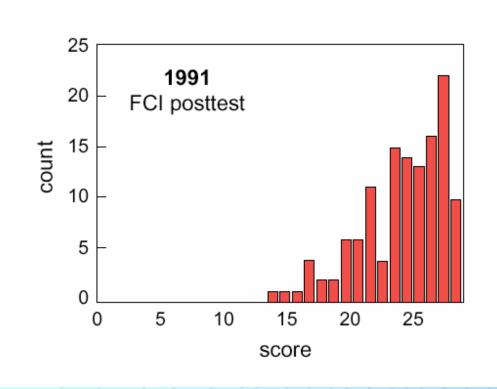
Interaction outside class: JiTT

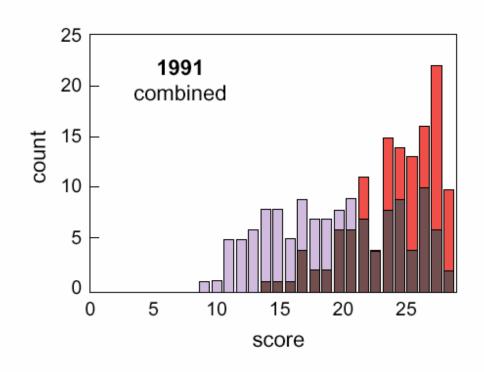
Assign reading

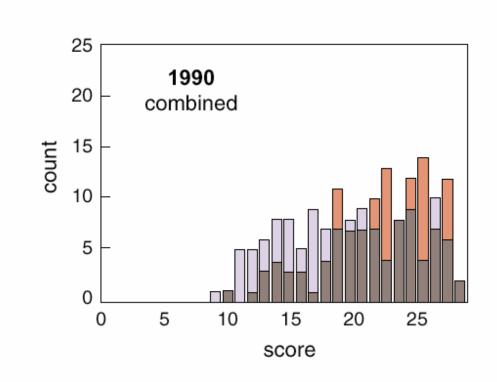
- Insist student read **before** class.
- Test them on reading, not on understanding
- Ask the special question:

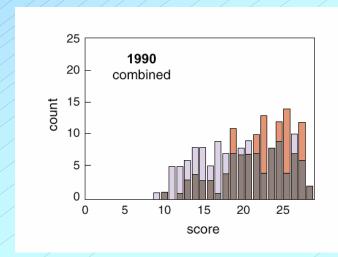
"What did you find confusing about the reading? If you found nothing confusing mention something that you found interesting."

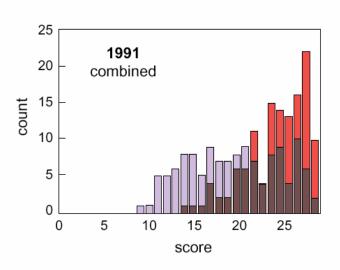

Make it worthwhile for them

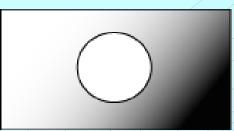

- Give them grades for trying (not for correctness)
- Read the responses to JiTT question
- Respond directly or address question in lecture


Ref: Just-In-Time Teaching: Blending Active Learning With Web Technology (Prentice Hall Series in Educational Innovation) by Gregor M. Novak (Editor), Evelyn T. Patterson, Andrew D. Gavrin http://webphysics.iupui.edu/jitt/jitt.html


Interaction in class: PI


- After discussing a significant concept:
 - Stop; ask ConcepTest question
 - Steps:
 - 1. Question
 - 2. Thinking
 - 3. Individual answer
 - 4. Peer discussion
 - 5. Individual answer
 - 6. Instructor explanation
 - Adjust lecture based on feedback





ConcepTest Design

Consider a rectangular plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

- 1. Increases
- 2. Decreases
- 3. Stays the same

ConcepTest Design II

A boat carrying a large boulder is floating in a lake. The boulder is thrown overboard and sinks to the bottom of the lake.

Does the level of the water in the lake (with respect to the shore):

- 1. go up
- 2. go down, or
- 3. stay the same?

ConcepTest Design Messages

- Focus on a concept not fact.
- Make them think not remember
- Incorrect answers in a multiple choice are important
 - Ask open ended question first
 - Make most common incorrect answer the "distracter" incorrect responses.
- Try to measure the gain* of a question
- Adjust question so about 50% of class has wrong first answer
- Reinforce your concept with an explanation

So what about technology?

- Use it to make instruction easier
 - ▶ Use web-based tools for JiTT
 - Use PRS like tools to accept anonymous (to each other) student responses
 - Use web-based databases to locate good ConcepTests and publish yours
 - Use technology to identify effectiveness of ConcepTests
 - ► Use technology to make PI easier and more effective in class

Implementing PI in the classroom

- 384 instructors who used PI were surveyed*
- Good news first:
 - ▶ 90% of 30 courses who tested the students performed well in FCI
 - ► Nearly 80% said they would definitely use PI again
 - Wide range of courses high school to universities

^{*}Ref: Peer Instruction: Results from a Range of Classrooms, Adam P. Fagen, Catherine H. Crouch, and Eric Mazur, *Phys. Teach.* **40**, 206-209 (2002).

13% said creating material was difficult

A lot of material already exists for a number of subjects:

- 1. Physics: http://www.deas.harvard.edu/galileo
- 2. Chemistry: http://www.chem.wisc.edu/~concept/
- 3. Astronomy:

http://hea-www.harvard.edu/~pgreen/educ/ConcepTests.html

4. More subjects coming:

Geology, Mathematics, ...

- ▶ 10% cited colleague skepticism
- Collect data assiduously
- Pit your results against courses with no PI on identical examinations
- Less combative approaches include asking colleagues to sit in class

- 9% said they didn't have enough time to cover all the material in course
- ► A small fraction were able to reduce coursework. (This may not always be possible)
- Use JiTT to make students read and prepare before they come to class

▶ 7% cited student resistance to PI

"some students were too cool, too alienated, or perhaps too lost to participate".

- Impress upon students the rationale and value of PI
- Explain how PI works and why you believe it will work for them
- Regularly present class averaged grades to demonstrate its effectiveness
- Circulate guide and encourage
- Give credit for participation
- Have CT like questions in exams

Acknowledgments

This work is funded by:

NSF Distinguished Teaching Scholar Award DEAS Information Technology Group

For more information please visit:

http://mazur-www.harvard.edu

http://www.deas.harvard.edu/galileo

Useful Resources

- Old Project Galileo site (useful information on education research):
 - http://galileo.harvard.edu
- New Galileo site (updated ConcepTests and tools):
 - http://www.deas.harvard.edu/galileo
- JiTT web-site:
 - http://webphysics.iupui.edu/jitt/jitt.html
- Mazur Group papers & talks:
 - http://mazur-www.harvard.edu/library
- ▶ Prof. Mazur's Spring Physics course web-site:
 - http://physics1.harvard.edu
- Suvendra Nath Dutta contact info:
 - Email: sdutta@deas.harvard.edu
 - ► Phone: (617) 495-9616