Femtosecond laser microsurgery in live cells and multiphoton imaging

Nan Shen Debjyoti Datta Chris B. Schaffer Eric Mazur Philip LeDuc Donald E. Ingber Harvard University

MRS Meeting December 3, 2002

Introduction

high intensity at focus

causes nonlinear ionization

producing microscopic bulk disruption

Introduction

top view

⇒ Background

Absorption mechanism Dynamics of photodisruption

Multiphoton imaging

Summary

Background

Absorption mechanism

Dynamics of photodisruption

Microsurgery in live cells

➡ Multiphoton imaging

➡ Summary

multiphoton ionization

ionization rate $\propto I^n$

Mechanism

tunneling probability $\propto I^{-1/2} \exp(I^{-1/2})$

Mechanism

avalanche ionization

avalanche ionization

ionization rate ~ *nI*

Background

Absorption mechanism Dynamics of photodisruption

➡ Microsurgery in live cells

➡ Multiphoton imaging

➡ Summary

time-resolved imaging of microexplosion in water

Dynamics

microexplosion radius vs. time

Dynamics

short pulse produces the same power and intensity for less pulse energy

Dynamics

fs pulse ps pulse
subsurface damage
at 20µJ

surface damage at 40µJ

fs pulse

ps pulse

Background Absorption mechanism Dynamics of photodisruption

Multiphoton imaging

Summary

before

before

before

after

100 fs, 2 nJ/pulse

before

100 fs, 2 nJ/pulse

after

Mitochondrial organization:

continuous network similar to the endoplasmic reticulum? or independent functional units?

before

before

before

Ref. K. Konig, I. Riemann, and W. Fritzsche, Opt. Lett. 26 (2001)

Targeted transfection by femtosecond laser

800 nm, <100 fs, 80 MHz

Ref. Uday K. Tirlapur and Karsten Konig, Nature 418 (2001).

⇒ Background

Absorption mechanism

Dynamics of photodisruption

Multiphoton imaging

➡ Summary

Why multiphoton imaging?

Why multiphoton imaging?

sectioning capability

Why multiphoton imaging?

sectioning capability

less photobleaching of the fluorophore

sample objective

linear absorption of light at the focus

multiphoton absorption of fs pulses at the focus

Why multiphoton imaging?

sectioning capability

less photobleaching of the fluorophore

deeper penetration for thick samples

Why multiphoton imaging?

sectioning capability

less photobleaching of the fluorophore

deeper penetration for thick samples

easier alignment

... extend cavity of standard Ti:Sapph oscillator

laser specs: 20 nJ, 25 MHz, 20 fs

Ref: A.R. Libertun, et.al., CLEO 1999; S.H. Cho, et. al., CLEO 1999.

Microscope

yellow-green microspheres with ~2μm radius

yellow-green microspheres with ~2µm radius

Confocal microscopy image

Two-photon microscopy image

Ref: Neuroscience group, Department of Anatomy, University of Bristol

photodisrupt subcellular organelles in live cells

study cellular functions and processes

combine microsurgery and multiphoton imaging

Funding: National Science Foundation

Acknowledgments:

Mazur group

Melton group

Weitz group

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu