Black silicon: Using lasers to make novel materials

Catherine H. Crouch Harvard University

Harvard University 14 February 2003

Study effect of extremely intense laser pulses

Develop novel materials

Femtosecond laser pulses

800 nm, 100 fs laser pulses

- ▶ last only 10⁻¹³ seconds
- ▶ 30 cycles of electromagnetic wave
- extend only 30 μm

Extremely high peak power and intensity

- ▶ peak power > 10⁹ W
- ▶ focused beam: ~ 10¹⁷ W/cm²

Modification of materials

light-matter interactions

Modification of materials

temporary effect on material

Modification of materials

permanent change to material

plasma formation

1. What is black silicon?

2. Why is it black?

3. How does it get that way?

irradiate surface with femtosecond laser pulses (800 nm, 100 fs, 500 pulses, 10 kJ/m²)

Optical properties

3 µm

measure reflectance, transmittance with integrating sphere

reflectance

reflectance

transmittance

transmittance

absorptance (A = 1 - R - T)

absorptance

absorptance

Why is it black?

Multiple reflections can enhance absorption

absorptance

absorptance

What produces the below-band gap absorption?

What changes band structure?

- impurities
- defects

Work with other gases:

gas species incorporated into surface layer sulfur required for below-band gap absorption (H_2S, SF_6)

absorptance

Sheehy et al., in preparation

Surfaces structured in SF₆:

1.6% sulfur in surface layer (RBS)

also fluorine, oxygen

sulfur content decreases significantly on annealing

sulfur introduces states in silicon band gap

at high concentrations, states may broaden into a band

at high concentrations, states may broaden into a band

n-type impurity band: metallic

at high concentrations, states may broaden into a band

p-type impurity band: reduced band gap, absorption should drop off around 3 µm

near-IR transmittance rises around 3 µm: *p*-type

Further evidence for *p*-type impurity band:

- *n*-type material behaves like *p*-*n* junction after structuring
- *p*-type material does not
Sulfur a likely explanation:

- sulfur required for below-band gap absorption
- annealing reduces sulfur and absorption
- appropriate wavelength range (*p*-type)

What is the underlying structure?

cross-sectional TEM, ion channeling:

core of spikes: undisturbed Si

surface layer: polycrystalline Si, impurities, embedded nanocrystallites and pores

Annealing at 500 C for three hours:

before

after

annealed

annealing does not affect visible structure

What happens with nanosecond pulses?

fs pulses: Her *et al.*, APL **73**, 1673 (1998) ns pulses: Pedraza *et al.*, APL **74**, 2322 (1999).

How do nanosecond and femtosecond compare?

800 nm, 100 fs, 10 kJ/m²

248 nm, 30 ns, 30 kJ/m²

Nanosecond cones bigger, smoother

800 nm, 100 fs, 10 kJ/m²

fs cones etched below surface

248 nm, 30 ns, 30 kJ/m²

ns cones grow above surface

Nanosecond cones bigger, smoother

Nanosecond cones grow, femtosecond cones are etched

Very different morphology!

How do optical properties compare?

absorptance

Ns and fs cone composition similar

ns: 0.7% sulfur (ion channeling)

fs: 1.6% sulfur (ion channeling)

both: sulfur content decreases significantly on annealing

also high fluorine content (ToF SIMS)

Ns and fs ion channeling: structural differences

both: polycrystalline (not amorphous)

ns: significant crystallinity, sulfur 50% substitutional

fs: no substitutional sulfur

optical properties virtually identical

sulfur content similar

structure and morphology very different!

Summary of optical properties

- visible absorptance: multiple reflections
- infrared absorptance: new electronic states
- p-type sulfur impurity band below CB edge

How do the microstructures form?

100 S Star ×2000 #3548 512 × 480 15mm 20PW -10kV 0000

How do ripples give way to spikes?

Follow evolution of spatial frequencies

- vary number of laser pulses
- calculate Fourier transform of images

ripples

laser polarization

SF₆

- 1. Interference ripples $(\perp \text{ to polarization})$
- 2. Coarsened ridges (⊥ to ripples)
- 3. Beads sharpening into spikes

$$N = 2$$

N = 4

N = 10

Two distinct wavelengths: ripples and spikes

feature intensities

SF₆ ripples

parallel

perpendicular

feature intensities

SF₆ spikes

parallel

perpendicular

- spike wavelength appears as ripple wavelength disappears
- spike wavelength appears first perpendicular to polarization

N = 10

What sets the length scales?

- ripples: laser wavelength
- ridges and spikes: perhaps capillary waves

Capillary wavelength set by melt depth, duration

$$\lambda = \left[\frac{\sigma d}{\rho}\right]^{\frac{1}{4}} (2\pi\tau)^{\frac{1}{2}}$$

- longest wavelength similar to spike spacing (10 µm)
- both spike spacing and capillary wavelength increase with laser fluence

place grid in front of substrate

scan laser beam

scan laser beam

remove grid

Si x2000 512 x 480 5kV 24mm H300.TIF - m402

Ordering

Shen et al., to appear in Appl. Phys. Lett.

Black silicon

Applications

3 µm

Black silicon:

- near-unity absorption from near-UV to near-IR
- *p*-type sulfur impurity band below CB edge
- self-organized surface microstructures
- many promising applications!

Collaborators: Jim Carey, John Chervinsky, François Génin (TEM), Michael Sheehy, Mengyan Shen, Jeffrey Warrender, Rebecca Younkin

Eric Mazur Michael Aziz, Cynthia Friend, Howard Stone

Funding: Department of Energy, National Science Foundation (Harvard MRSEC)

For a copy of this talk and additional information: http://mazur-www.harvard.edu

Could nanostructures explain infrared absorption?

annealing

ns pulses

different gases

Structural analysis

before annealing

after annealing

no evident structural change with annealing (consistent with multiple reflections in visible)

no evident structural change with annealing ns pulses produce very different structure, but same composition and optical properties

Structural analysis

10 µm

all except Cl₂ show surface nanostructure

Structural analysis

surface disorder present in air sample

no evident structural change with annealing ns pulses produce very different structure, same composition and optical properties

different gases all produce nanostructures

