Nano-textured Surfaces

Tsing-Hua Her Claudia Wu Jim Carey Mike Sheehy Brian Tull Meng Yan Shen Catherine Crouch Cynthia Friend

Industrial Outreach Program Workshop 11 April 2003

irradiate with 100-fs 10 kJ/m² pulses

'black silicon'

Appl. Phys. Lett. 73, 1673 (1998)

- maskless etching process
- self-organized, tall, sharp structures
- nanoscale structure on spikes

- Outlook
- Structural and chemical analysis
- **Properties**

reflectance (integrating sphere)

reflectance (integrating sphere)

transmittance (integrating sphere)

transmittance (integrating sphere)

absorptance (1 - R - T)

absorptance (1 - R - T)

Appl. Phys. Lett. 78, 1850 (2001)

- Points to keep in mind:
 - near unity absorption
 - sub-band gap absorption
 - IR photoelectron generation

- Points to keep in mind:
 - near unity absorption
 - sub-band gap absorption
 - IR photoelectron generation
 - high field emission at low fields

Outlook

cross-sectional TEM (F. Génin, M. Wall, LLNL)

cross-sectional TEM:

core of spikes: undisturbed Si

surface layer: disordered Si, impurities, nanocrystallites and pores

sulfur introduces states in the gap

sulfur introduces states in the gap

Janzén, et al., Phys. Rev. B 29,1907 (1984)

states broaden into a band

donor: metal-like behavior

acceptor: absorption until 3 µm

acceptor: absorption out to 3 µm

near-IR transmittance rises around 3 µm

Outlook

Structural and chemical analysis

- Properties

Outline

Outlook

development of spikes

- spike formation through grids
- cell adhesion
- functionalization

can ordering of spikes be improved by using a grid?

place grid in front of substrate

Outlook

scan laser beam

scan laser beam

remove grid

Si x2000 512 x 480 5kV 24mm H300.TIF - m402

Outlook

Microstructured silicon

fabricated by simple, maskless process

Microstructured silicon

fabricated by simple, maskless process

can be integrated with microelectronics

Funding: ARO, DoE, NDSEG

Acknowledgments:

Dr. François Génin (LLNL) Dr. Arieh Karger (Radiation Monitoring Devices) Dr. Alf Bjørseth (Scanwafer) Dr. Tom Mates (UCSB) Dr. John Chervinsky (Harvard University) Prof. Mike Aziz (Harvard University)

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu