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use damage for processing!
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Processing with fs pulses

Role of focusing

Low-energy processing
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von der Linde, et al., J. Opt. Soc. Am. 13, 216 (1996)

Processing with fs pulses

“… clear evidence that no bulk plasmas ... 

[and] ... no bulk damage could be produced 

with femtosecond laser pulses.”
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Processing with fs pulses

focus laser beam inside material
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Processing with fs pulses
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Processing with fs pulses

5 x 5 µm array

fused silica, 0.65 NA

0.5 µJ, 100 fs, 800 nm

Opt. Lett. 21, 2023 (1996)
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Processing with fs pulses

high intensity at focus…
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… causes nonlinear ionization…



transparent
material

objective

Processing with fs pulses

and ‘microexplosion’ causes microscopic damage



Processing with fs pulses

Points to keep in mind:

fs laser processing works

focusing very important

no collateral damage
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Role of focusing

Low-energy processing
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block probe beam…
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… bring in pump beam…
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… damage scatters probe beam
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vary numerical aperture in Corning 0211
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Role of focusing

fit gives threshold intensity: Ith = 2.5 x 1017 W/m2
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Role of focusing

Points to keep in mind:

threshold critically dependent on NA

surprisingly little material dependence

avalanche ionization important



Outline

Processing with fs pulses

Role of focusing

Low-energy processing
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Low-energy processing

threshold decreases with increasing numerical aperture
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Low-energy processing

less than 10 nJ at high numerical aperture!



100 fs

1 ms

Low-energy processing

amplified laser

heat-diffusion time: �diff ≈ 1 
s
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Low-energy processing

long-cavity Ti:sapphire oscillator

heat-diffusion time: �diff ≈ 1 
s



Low-energy processing

10 µm
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Low-energy processing
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Low-energy processing

waveguide machining



Low-energy processing

waveguide machining
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Low-energy processing

waveguide mode analysis
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near field mode
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Low-energy processing

curved waveguides
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3D wave splitter



Low-energy processing

Bragg grating

λn



Low-energy processing

Bragg grating
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Low-energy processing

monolithic amplifier

laser active glass
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epi-fluorescence microscope
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UV illumination…
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process with fs laser beam
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Low-energy processing

before after

examine in confocal microscope
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Low-energy processing

5 µm



Low-energy processing

channel

5 µm

channel



Low-energy processing

channel

5 µm

channel

cavitycavity



Low-energy processing





Low-energy processing

Ethydium bromide test
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Low-energy processing

Ethydium bromide test

target 1

target 2



E (nJ)

rep rate 
(MHz)

10

1

100

1000

Summary



E (nJ)

rep rate 
(MHz)

SINGLE-SHOT
DISRUPTION

CUMULATIVE
EFFECTS

10

1

100

1000

Summary



E (nJ)

rep rate 
(MHz)

SINGLE-SHOT
DISRUPTION

CUMULATIVE
EFFECTS

cell manipulation

10

1

100

1000

Summary



E (nJ)

rep rate 
(MHz)

SINGLE-SHOT
DISRUPTION

CUMULATIVE
EFFECTS

cell manipulation device fabrication

10

1

100

1000

1 2

3

1
2

3

He:Ne

Summary



E (nJ)

rep rate 
(MHz)

SINGLE-SHOT
DISRUPTION

CUMULATIVE
EFFECTS

data storage

cell manipulation device fabrication

10

1

100

1000

1 2

3

1
2

3

He:Ne

Summary



E (nJ)

rep rate 
(MHz)

basic science

SINGLE-SHOT
DISRUPTION

CUMULATIVE
EFFECTS

data storage

cell manipulation device fabrication

10

1

100

1000

1 2

3

1
2

3

He:Ne

Summary



Conclusion

wiring optoelectronics circuits of the future

manipulating the machinery of life
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Low-energy processing

bleaching or disruption?

10 µm



Low-energy processing

bleaching or disruption?

10 µm


	stop movie: 


