Peer Instruction in Large (and small!) Lectures

Eric Mazur Harvard University

Studiedag Onderwijsvernieuwing Leuven, 4 June 2002

Outline

- Problem

Outline

- Problem
- Cause

Outline

- Problem
- Cause
- Remedy

We have a problem

380,000 students take introductory physics each year...

AIP Report R-151.33 (1997)

We have a problem

about 1\% of these get
a bachelor's degree in physics

AIP Report R-151.33 (1997)

We have a problem

Of the 4,300 students with
a bachelor's degree in physics...

AIP Report R-151.33 (1997)

We have a problem

about 35\% go on to get a Ph.D. in physics...

AIP Report R-151.33 (1997)

We have a problem

That's one out of every
260 students in our introductory courses!

We have a problem

What about the other 259...?

We have a problem

What do we know about these students?

We have a problem

Some disturbing symptoms:

- frustration
- lack of understanding
- lack of basic knowledge

We have a problem

They know the jargon:

\triangleright circular motion
\triangleright barometric pressure
\triangleright light radius
\triangleright something to the power times ten to the something

We have a problem

They are aware of their lack of knowledge
\triangleright I graduated from college but I didn't study astronomy
\triangleright It's been a while since I've had physics

We have a problem

They are aware of their lack of knowledge
\triangleright I graduated from college but I didn't study astronomy
\triangleright It's been a while since I've had physics
...and they don't care!

We have a problem

Should we worry?

We have a problem

We'd better!

We have a problem

"I took four years of science and four years of math...

A waste of my time, a waste of the teacher's time, and a waste of space...

You know, I took physics.

For what?"

Why do we have this problem?

Why do we have this problem?

Lectures focus on transfer of information...

Why do we have this problem?

Conventional problems reinforce bad study habits

Why do we have this problem?

Conventional problems reinforce bad study habits

Why do we have this problem?

Conventional problems reinforce bad study habits

Calculate:
(a) the current in the $2-\Omega$ resistor, and
(b) the potential difference between points P and Q

Why do we have this problem?

Are basic principles understood?

Why do we have this problem?

Are basic principles understood?

When S is closed, what happens to the:
(a) intensities of A and B ?
(b) intensity of C ?
(c) current through battery?
(d) voltage drop across
A, B, and C ?
(e) total power dissipated?

Why do we have this problem?

conceptual

Why do we have this problem?

conventional

conceptual

Why do we have this problem?

Why do we have this problem?

Peer Instruction

Help students take more responsibility for learning!

Peer Instruction

Main features:

\triangleright Pre-class reading

- In class: depth, not coverage
- ConcepTests

ConcepTest

Is it any good?

- Results

Results

Better understanding leads to better problem solving!

Results

Better understanding leads to better

 problem solving!(but "good" problem solving doesn't always indicate understanding!)

Is it any good?

\triangleright Results

- Student Reactions

Conclusion

Let's not forget the base of the pyramid!

Conclusion

Let's give them something of value!

Outline

\triangleright Research: providing the basis for change

- ConcepTests: brains-on demo
- Problem with Problems
- Discussion

Why use Peer Instruction?

Force Concept Inventory data

Why use Peer Instruction?

Results

Results

Results

Results

Results

ConcepTest data

Who benefits?

Who benefits?

Who benefits?

even best students are challenged!

Who benefits?

Question 1

Consider a rectangular metal plate with a circular hole in it.

Question 1

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly
 heated, the diameter of the hole

1. increases
2. stays the same
3. decreases

Message 1

It's easy to fire up the audience!

Question 2

A boat carrying a large boulder is floating on a lake. The boulder is thrown overboard and sinks to the bottom of the lake.

Question 2

A boat carrying a large boulder is floating on a lake. The boulder is thrown overboard and sinks to the bottom of the lake.

Does the level of the water in the lake (with respect to the shore)

1. go up,
2. go down, or
3. stay the same?

Message 2

We all make mistakes!

Question 3

Consider an object that floats in water but sinks in oil. When the object floats in water, half of it is submerged.

Question 3

Consider an object that floats in water but sinks in oil. When the object floats in water, half of it is submerged.

If we slowly pour oil on top of the
 water so it completely covers the object, the object

1. moves up.
2. stays in the same place.
3. moves down.

Message 3

It's easy to make simple demonstrations fascinating!

Question 4

When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left:

Question 4

When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left:

z9miT » $\begin{aligned} & \text { lyoY w9И 9nT }\end{aligned}$

Why is it that right and left are interchanged and not top and bottom? Because

1. the mirror is oriented vertically,
2. we have two eyes in the horizontal plane,
3. the Earth's gravitation is directed downward,
4. a habit we have when looking at images in a mirror,
5. It only appears to run from left to right.

Message 4

It's "simple" only if you know the answer

Feedback

Flashcards: simple and effective!

Feedback

Flashcards: simple and effective!

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Requires assumptions
Requires developing a model Requires applying that model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

How long do you have to wait before someone frees up a space?

Requires developing a model Requires applying that model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for about 2 hours.

Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space?

Requires applying a (new) model

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

$$
t_{\text {wait }}=\frac{T_{\text {shop }}}{N_{\text {spaces }}}
$$

Problem with problems

On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area where people are known to shop, on average, for two hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces.

How long do you have to wait before someone frees up a space?

Requires using a calculator

$$
t_{\text {wait }}=\frac{T_{\text {shop }}}{N_{\text {spaces }}}
$$

Essential elements

\triangleright Reading (before class)

- Participation (during class)
- Problem-solving (after class)
- Appropriate testing/assessment

Coverage

traditional

coverage
retention
encyclopedic
disappointing

Coverage

traditional interactive

coverage	encyclopedic	less?
retention	disappointing	more!

Coverage

traditional interactive

coverage	encyclopedic	less?
retention	disappointing	more!

"What counts is not how much is covered, but how much is uncovered"

Viki Weisskopf

Reading

\triangleright Web-based assignment due before class

Reading

\triangleright Web-based assignment due before class
\triangleright Three questions (content and feedback)

Reading

\triangleright Web-based assignment due before class
\checkmark Three questions (content and feedback)
\triangleright Graded on effort

Reading

\triangleright Web-based assignment due before class
\checkmark Three questions (content and feedback)
\triangleright Graded on effort

- 5\% of final grade

Resources

Peer Instruction: A User's Manual (Prentice Hall, 1997) http://galileo.harvard.edu

Funding

National Science Foundation

For a copy of this talk and additional information:

http://mazur-www.harvard.edu

Conclusion

Challenges:

- internal skepticism
\triangleright growing pains
- limited circle of influence

Conclusion

Rewards:

- engagement
- improved understanding
\triangleright class is fun!

Funding

National Science Foundation

For a copy of this talk and additional information:

http://mazur-www.harvard.edu

