FEMTOSECOND LASER WRITING IN LASER GLASSES

S. K. Sundaram Pacific Northwest National Laboratory, Richland, WA and J. Ashcom, R. R. Gattass, I. Maxwell and Eric Mazur

Harvard University, Cambridge, MA

Other contributors: Charles F. Windisch Jr. (micro-Raman) Ralph E. Williford (AFM) Bradley R. Johnson (SEM/EDS)

Femtolaser Laser Writing

- In the case of a femtosecond laser pulse, the light is absorbed by electrons, and *the optical excitation ends before the lattice is perturbed*.
- A femtosecond laser pulse is tightly focused inside transparent glasses. At the point of laser focus, *the laser intensity becomes high enough to cause nonlinear absorption* (i.e., multiphoton, tunneling, and avalanche ionization, continuum generation).
- If enough laser energy is deposited into the material, *permanent structural changes* (i.e., damage – voxels, lines) are produced at the laser focus.

Motivation

- Microstructuring of optically-active glasses*
 - *Miniaturization* of photonic components
 - *Integration* of active photonic devices
- Room temperature persistent spectral hole burning (PSHB)**
 - Application to *high-density frequency domain optical storage*
 - Samarium-doped aluminum silicate (inhomogeneous line width, compositional variations, and ease of production)
- * K. Hirao, T. Mitsuyu, J. Si, J. Qiu, "Active Glass for Photonic Devices" Springer, 2000.
- ** H. Song, M. Nogami, "Room temperature hole-burning and sublinear hole-growth dynamics in an Sm²⁺-doped aluminosilicate glass," J. Non-Cryst. Solids, 297, 113-119 (2002).

Battelle

Objectives

- *Demonstrate* writing of dots and lines in optically active glasses
- *Study* the evolution of the structures in these glasses
- Characterize topography and structure generated

Glass Sample Preparation

- Samarium alumino-silicate (SAS) glass*
 - $10Sm_2O_3 \cdot 25Al_2O_3 \cdot 65SiO_2$
- Laser glass Nd-doped alkali/alkaline earth aluminophosphate glass

	\mathcal{O}	
(mol%)	adj mol%	source
10.00	9.82	AI_2O_3
15.00	14.73	BaCO ₃
15.00	14.73	K ₂ CO ₃
0.00	1.80	Nd_2O_3
60.00	58.92	P_2O_5
100.00		
	(mol%) 10.00 15.00 15.00 0.00 60.00 100.00	(mol%)adj mol%10.009.8215.0014.7315.0014.730.001.8060.0058.92100.001

 Batching, melting, remelting, casting, cooling and annealing

* Dr. Delbert Day (UMR) Battelle

Femtosecond Laser Writing

- Coherent RegA Ti-sapphire amplified system
 - Operating at: 250 kHz, 100 fs, 800 nm
- Focusing conditions 0.25 NA
- Estimated spot area 3 μm²
- Power 0.2 0.66 W
- Energy 0.9 2.6 μJ
- Fluence $0.56-1.68 (J/m^2) \times 10^6$
- Room temperature
- Surface/near surface

Written Structures & Characterization

• Lines (3 sets using 0.6, 1.7, and 2.7 μ J, 100 μ m apart)

Characterization

- 2500000 pulses (100 µm/s)
- Non-contact optical profilometry (×20), AFM, SEM/EDS, micro-Raman

Structures in SAS-Glass

Profilometry

Profilometry (continued)

Battelle

AFM Results

SEM Results

Elemental Map

Battelle

Profilometry - Top Line (0.88W/1875 pulses)

228

SEM Results – 0.88W/1875 pulses

SEM Results - 0.88W/3750 pulses

Battelle

SEM Results - 0.88W/7500 pulses

Battelle

SEM Results - 0.88W/15000 pulses

Battelle

Submicron Structures

Shock waves?

Surface ripples?

Samarium → increasing electronic conductivity - higher thermal conductivity - rapid cooling

Battelle

Laser Glass - Profilometry - 0.22 W

U.S. Department of Energy Pacific Northwest National Laboratory

Profilometry (continued) – 0.22 W

Profilometry (continued) – 0.22 W

Battelle

Profilometry (continued) – 0.42 W

U.S. Department of Energy Pacific Northwest National Laboratory

Profilometry (continued) – 0. 42 W

Profilometry (continued) – 0.88 W

Micro-Raman Data

Battelle

Summary

- Our writing experience in active glasses shows familiar features and sequence of structure evolution- *cone formation, collapsing, and crater-forming* in all the samples.
- Substructure formed within lines written in samarium aluminosilicate glass may be *signatures of shock waves or surface ripples* frozen in the glass as the writing progresses.

Acknowledgement

- Summer interns Richard Shtiveland (OSU) and Brian Riley (UW) preparation of the laser glass
- PNNL business development support
- Department of Energy support

