

Femtosecond micromaching of transparent materials

Iva Maxwell, Rafael Gattass, Jonathan Ashcom, Limin Tong and Eric Mazur

Department of Physics Division of Engineering and Applied Sciences Harvard University

Erice, May 2003

- 1. Our group & Cambridge
- 2. Nonlinear absorption in transparent materials
- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

1. Our group & Cambridge

- 2. Nonlinear absorption in transparent materials
- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

Massachusetts

Massachusetts

The Mazur Group

Kayaking in Ipswich Bay, Sept 2002

The Mazur Group

black silicon

nanosurgery

ultrafast dynamics

micromachining

science education

1. Our group & Cambridge

2. Nonlinear absorption in transparent materials

- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

Normally, the material characteristics define the way light behaves

Normally, the material characteristics define the way light behaves

Normally, the material characteristics define the way light behaves

Linear absorption

What happens if we focus?

Linear absorption

What happens if we focus? Nothing...

Now, compress these photons in time AND space

Now, compress these photons in time AND space

Now, compress these photons in time AND space

- 1. Our group & Cambridge
- 2. Nonlinear absorption in transparent materials
- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

Focusing dependence

Damage localized to the focal volume

for a 1.4 N.A. objective

for a 0.25 N.A. objective

Focusing dependence

Damage localized to the focal volume

b a 500 nJ 500 nJ the l С 6 50 nJ 15 nJ 5 µm k 0.45 NA 1.4 NA

Focusing dependence

Damage localized to the focal volume

100 fs 1.4 NA Corning 0211

Focusing dependence for Corning 0211 glass

Schaffer et al., Opt. Lett. 26, 93 (2001)

Focusing dependence for Corning 0211 glass

Schaffer et al., Opt. Lett. 26, 93 (2001)

- 1. Our group & Cambridge
- 2. Nonlinear absorption in transparent materials
- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

Mechanisms overview

Time scale (s)	Effect	
- 10 ⁻¹⁵	Absorption of laser pulse	
- 10 ⁻¹²	Plasma recombination with ions	
- 10 ⁻⁶	Thermal diffusion time out of focal volume	

Mechanisms overview

Structural changes exceed focal spot

Schaffer et al., Opt. Lett. 26, 93 (2001)

Transition point

kHz low repetition rate	?	MHz high repetition	rate
repetitive regime		cumulative regime	
focusing limited amplified system		number of shots limited oscillator only	

- 1. Our group & Cambridge
- 2. Nonlinear absorption in transparent materials
- 3. Focusing effects
- 4. Repetitive vs. thermal regime
- 5. Applications

Applications

In the cumulative regime, the energy deposited by a train of pulse accumulates in the focal volume. This results in a point source of heat.

Applications

Translating the sample with respect to the laser beam generates a continuous structure.

Applications

Translating the sample with respect to the laser beam generates a continuous structure.

Number of pulses vs. index of refraction

Effective change in the number of shots at each spot

1.5 v

v= 20 mm/s $2\omega_0 = 0.5 \ \mu m$ Rep. Rate = 25Mhz

Number of pulses vs. index of refraction

Effective change in the number of shots at each spot

1.5 v

v= 20 mm/s
$$2\omega_0 = 0.5 \mu m$$

Rep. Rate = 25Mhz

$$_{max} = 6 \times 10^{2}$$

Ν

Waveguides

Sagitta Inc., internal doc.

Waveguides

Number of pulses vs. index of refraction

-10

0

-20

Near Field mode at 1550 nm

speed

20 mm/s

10

20

Sagitta Inc., internal doc.

Bend Loss

Bend Loss

Limin Tong et al. submitted to Opt. Comm.

Bend Loss

Polarization Loss

No significant change in the polarization

Max. change 2%

- nonlinear absorption in transparent media is possible
- two definite regimes of repetitive vs.
 cumulative thermal
- what are the underlying mechanisms
- myriad of applications

Acknowledgements

