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Focusing dependence

Damage localized to the focal volume

Process is intensity
dependent

I 0.5 um

>
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for a 1.4 N.A. objective for a 0.25 N.A. objective



Focusing dependence

Damage localized to the focal volume

500 nJ
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Focusing dependence

Damage localized to the focal volume

6.6 nJ 13 nd 33 nJ 66 nJ

100 fs k
1.4 NA ®
Corning 0211



Focusing dependence

Focusing dependence for Corning 0211 glass
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Thermal machining

Energy deposition in the repetitive and cumulative
regime
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Thermal machining

Structural changes exceed focal spot
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Schaffer et al., Opt. Lett. 26, 93 (2001)



Thermal machining

Transition point

number of shots
limited

focusing limited

amplified system
oscillator only

repetitive regime cumulative regime

MHz
high repetition rate

kHz
low repetition rate




Thermal machining

Repetition Rate
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Thermal machining
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Applications

In the cumulative regime, the energy deposited by a train of
pulse accumulates in the focal volume. This results in a point

source of heat.
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Applications

Translating the sample with respect to the laser beam
generates a continuous structure.
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Applications

Translating the sample with respect to the laser beam
generates a continuous structure.
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Number of pulses vs. index of refraction

Effective change in the number
of shots at each spot
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Number of pulses vs. index of refraction

Effective change in the number
of shots at each spot
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Waveguides

Number of pulses vs. index of refraction

Near Field
mode
at 1550 nm
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Curved Waveguides

Bend Loss
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Limin Tong et al. submitted to Opt. Comm.
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Curved Waveguides

Polarization Loss

No significant change in
the polarization
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Conclusion

- [honlinear absorption in transparent media is O
possible

- dwo definite regimes of repetitive vs.
cumulative thermal

- Ovhat are the underlying mechanisms
- [thyriad of applications
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