Memorization or Understanding: Are we teaching the right thing?

Outline

- Problem

Outline

- Problem
- Cause

Outline

- Problem
- Cause
- Remedy

We have a problem

340,000 students take introductory physics

each year

AIP Report R-151.39 (2003)

We have a problem

about 1\% of these get
a bachelor's degree in physics

AIP Report R-151.39 (2003)

We have a problem

Of the 4,100 students with
a bachelor's degree in physics...

We have a problem

about 28\% go on to get a Ph.D. in physics...

We have a problem

That's one out of every

300 students in our
introductory
courses!

AIP Report R-151.39 (2003)

We have a problem

What about the

other 299...?

AIP Report R-151.39 (2003)

We have a problem

What do we know

about these
students?

AIP Report R-151.39 (2003)

We have a problem

Some disturbing symptons:

- frustration
- lack of understanding
- lack of basic knowledge

We have a problem

They know the jargon:

- circular motion
- barometric pressure
- light radius
- something to the power times ten to the something

We have a problem

They are aware of their lack of knowledge:

- I graduated from college, but I didn't study astronomy
- It's been a while since I've had physics

We have a problem

They are aware of their lack of knowledge:

- I graduated from college, but I didn't study astronomy
- It's been a while since I've had physics

We have a problem

Should we worry?

We have a problem

We'd better!

We have a problem

"I took four years of science and four years of math...

A waste of my time, a waste of the teacher's time, and a waste of space...

You know, I took physics.

For what?"

Why do we have this problem?

Why do we have this problem?

lectures focus on delivery of information

Why do we have this problem?

education is not just information transfer

Why do we have this problem?

education is not just information transfer

Why do we have this problem?

education is not just information transfer

Why do we have this problem?

Why do we have this problem?

Why do we have this problem?

Why do we have this problem?

R.R. Hake, Am. J. Phys. 66, 64 (1998)

Why do we have this problem?

only one quarter of maximum gain realized

R.R. Hake, Am. J. Phys. 66, 64 (1998)

Why do we have this problem?

not transfer but assimilation of information is key

Why do we have this problem?

conventional problems reinforce bad study habits

Why do we have this problem?

conventional problems reinforce bad study habits

Calculate:
(a) current in $2-\Omega$ resistor
(b) potential difference between P and Q

Why do we have this problem?

are the basic principles understood?

Why do we have this problem?

are the basic principles understood?

When S is closed, what happens to:
(a) intensities of A and B ?
(b) intensity of C ?
(c) current through battery?
(d) potential difference across
A, B, and C ?
(e) the total power dissipated?

Why do we have this problem?

conventional

conceptual

Why do we have this problem?

conventional

conceptual

Why do we have this problem?

Why do we have this problem?

Peer Instruction

Give students more responsibility for gathering information...

Peer Instruction

Give students more responsibility for gathering information... so we can better help them assimilate it.

Peer Instruction

Main features:

- pre-class reading
- in-class: depth, not 'coverage'
- ConcepTests

Peer Instruction

Peer Instruction

is it any good?

Peer Instruction

first year of implementing PI

Peer Instruction

first year of implementing PI

Peer Instruction

first year of implementing PI

Peer Instruction

Peer Instruction

Peer Instruction

R.R. Hake, Am. J. Phys. 66, 64 (1998)

Peer Instruction

R.R. Hake, Am. J. Phys. 66, 64 (1998)

Peer Instruction

what about problem solving?

Peer Instruction

Peer Instruction

Peer Instruction

Peer Instruction

So better understanding leads to better problem solving!

Peer Instruction

So better understanding leads to better problem solving!
(but "good" problem solving doesn't always indicate understanding!)

Conclusion

Let's not forget the base

 of the pyramid

Conclusion

Let's given them something of value!

Funding:

National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu

