Publications

Submitted
E. N. Glezer. Submitted. “Method and apparatus providing 2-D/3-D optical information storage and retrieval in transparent materials”.Abstract
Sub-micron-scale, micron-scale and greater than micron-scale, crack-free and regularly-shaped structures of high-contrast refractive index are provided in transparent storage media by controllably focusing ultrashort laser pulses in the bulk of virtually any transparent medium respectively during operation in a "low energy," a "high energy", and a "third" operating regime. In any operating regime, the crack-free and regularly-shaped structures of high-contrast refractive index may be controllably patterned in 2-D or 3-D so as to permanently store both digital and non-digital information in the bulk of the transparent storage medium. For digital-type information, greater than one (1) Terabit, and up to one hundred (100) Terabit, digital information storage capacity in a CD-ROM sized disc is provided. Virtually any non-digital information may be permanently stored therewithin, such as corporate logos, alphanumeric characters, security codes, and artistic images, or diffraction gratings, diffractive optical elements or other optical structures. Information permanently stored in 2-D or 3-D in the bulk of any transparent medium is read by the unaided eye, and by optical microscopy (scattered and transmitted light modes), phase contrast microscopy, laser DIC microscopy and confocal microscopy in dependance on the type of the information and on the operating regime. Information may be written or read in series or in parallel.
E. Mazur and J. E. Carey. Submitted. “Silicon-based visible and near-infrared optoelectric devices”.Abstract
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
2018
Alexander W. Raymond, Brian J. Drouin, Adrian Tang, Erich Schlecht, and Eric Mazur. 1/2018. “Miniature cavity for in situ millimeter wave gas sensing: N2O and CH3OH detection.” Sensors and Actuators B: Chemical, 254, Pp. 763-770. Publisher's VersionAbstract
The Fabry-Perot cavity in a miniature pulsed Fourier transform millimeter-wave spectrometer operating between 94 and 104 GHz is characterized in detail. The new device measures gas or volatile composition in situ and has a nominal volume of 12 cm3, which is 200 times smaller than cavities operating at comparable frequencies in laboratory gas spectrometers. Scans of mode amplitude are presented as a function of mirror spacing and transmitter frequency. Primary (TEM00) and secondary (TEM10) modes are both observed and are matched to an eigenmode calculation. The modes are well-behaved and have quality factors in the range of 1000–6000, which is a desirable compromise between field strength and mode width. Measurements of pulse bandwidth versus duration agree with time-bandwidth product predictions. Measurements of rotational transitions in N2O and CH3OH are plotted at various pressures and collisional broadening is resolved at mTorr pressures. Through these gas detections, we demonstrate that it is possible to significantly reduce the size of cavity spectrometers for in situ deployment. The new device opens new possibilities for molecular sensing in pollution monitoring, planetary science, and other fields.
Alexander Raun, Nabiha Saklayen, Christine Zgrabik, Weilu Shen, Marinna Madrid, Marinus Huber, Evelyn Hu, and Eric Mazur. 2018. “A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery.” Scientific Reports , 8, Pp. 15595 . Publisher's VersionAbstract

The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior

molecules to enter the cell via diffusion. Various established delivery methods, including

electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity,

respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and

307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.

s41598-018-33885-y.pdf
2017
P. Zhang, L. Ding, and E. Mazur. 2017. “Peer Instruction in Introductory Physics: A Method to Bring About Positive Changes in Students’ Attitudes and Beliefs.” Phys. Rev. Phys. Educ. Res., 113, Pp. 010104-1–9. Publisher's VersionAbstract
This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three taught with Peer Instruction (PI). In two of the PI classes, student peer groups were constantly changing throughout the semester, while in the other PI class student groups remained fixed for the duration of the semester. The results of the pre- and posttest using the Colorado Learning Attitudes about Science Survey showed that students in traditional lecture settings became significantly more novice-like in their beliefs about physics and learning physics over the course of a semester, a result consistent with what was reported in the literature. However, all three of the classes taught using the PI method improved student attitudes and beliefs about physics and learning physics. In the PI class with fixed peer groups, students exhibited a greater positive shift in attitudes and beliefs than in the other PI class with changing peer groups. The study also looked at gender differences in student learning attitudes. Gender results revealed that female science majors in the PI classes achieved a greater positive shift in attitudes and beliefs after instruction than did male students.
2016
K. Anne Miller, S. Zyto, D. Karger, J. Yoo, and E. Mazur. 2016. “Analysis of student engagement in an online annotation system in the context of a flipped introductory physics class.” Phys. Rev. Phys. Educ. Res., 12, Pp. 020143:1–12. Publisher's VersionAbstract
We discuss student participation in an online social annotation forum over two semesters of a flipped, introductory physics course at Harvard University. We find that students who engage in high-level discussion online, especially by providing answers to their peers’ questions, make more gains in conceptual understanding than students who do not. This is true regardless of students’ physics background. We find that we can steer online interaction towards more productive and engaging discussion by seeding the discussion and managing the size of the sections. Seeded sections produce higher quality annotations and a greater proportion of generative threads than unseeded sections. Larger sections produce longer threads; however, beyond a certain section size, the quality of the discussion decreases.
D. Inna Vulis, Y. Li, O. Reshef, P. Muñoz, M. Yin, S. Kita, M. Loncar, and E. Mazur. 2016. “CMOS-compatible Zero-Index Metamaterial.” In . CLEO: Science and Innovations. Publisher's VersionAbstract
We present an on-chip Dirac-cone metamaterial with an impedance- matched zero refractive index at lambda = 1550nm. The design is a square array of air holes in 220-nm silicon- oninsulator (SOI) which offers compatibility with complementary metal-oxide-semiconductor (CMOS) technology.
M. Gerhard Moebius, F. Herrera, S. Griesse-Nascimento, O. Reshef, C. C. Evans, G. G. Guerreschi, A. n. Aspuru-Guzik, and E. Mazur. 2016. “Efficient photon triplet generation in integrated nanophotonic waveguides.” Optics Express, 24, Pp. 9932–9954. Publisher's VersionAbstract
Generation of entangled photons in nonlinear media constitutes a basic building block of modern photonic quantum technology. Current optical materials are severely limited in their ability to produce three or more entangled photons in a single event due to weak nonlinearities and challenges achieving phase-matching. We use integrated nanophotonics to enhance nonlinear interactions and develop protocols to design multimode waveguides that enable sustained phase-matching for third-order spontaneous parametric down-conversion (TOSPDC). We predict a generation efficiency of 0.13 triplets/s/mW of pump power in TiO2-based integrated waveguides, an order of magnitude higher than previous theoretical and experimental demonstrations. We experimentally verify our device design methods in TiO2 waveguides using third-harmonic generation (THG), the reverse process of TOSPDC that is subject to the same phase-matching constraints. We finally discuss the effect of finite detector bandwidth and photon losses on the energy- time coherence properties of the expected TOSPDC source.
L. Tucker, R. E. Scherr, T. Zickler, and E. Mazur. 2016. “Exclusively visual analysis of classroom group interactions.” Phys. Rev. Phys. Educ. Res., 12, Pp. 020142-1–020142-9. Publisher's VersionAbstract
Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data only—without audio—as when using both visual and audio data to code. Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a small bias to code interactions as group discussion when visual and audio data are used compared with video-only data. This work establishes that meaningful educational observation can be made through visual information alone. Further, it suggests that after initial work to create a coding scheme and validate it in each environment, computer-automated visual coding could drastically increase the breadth of qualitative studies and allow for meaningful educational analysis on a far greater scale.
S. H. Chung, M. R. Awal, J. Shay, M. M. McLoed, E. Mazur, and C. V. Gabel. 2016. “Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth.” Proc. Nat.l Acad. Sci., Pp. –.Abstract
During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity.
N. Lasry, J. Guillemette, M. Dugdale, E. Charles, and E. Mazur. 2016. “Peut-on apprendre sans désapprendre?” Pédagogie Collégiale, 29, Pp. 27–31. Publisher's VersionAbstract
D’après le romancier français Marcel Proust, «Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux » (Proust, 1923). Ainsi, l’un des principaux objectifs de l’enseignement des sciences est d’aider les étudiants à modifier leur vision du monde. Cela est particulièrement important en physique, car les étudiants ont souvent des idées préconçues qui vont à l’encontre de ce qu’on tente de leur enseigner (Bransford, Brown et Cocking, 2000 ; Knight et Burciaga, 2004 ; Redish, 2003), précisément en ce qui concerne les concepts newtoniens. Parmi ces des décennies (Clement, 1982 ; Halloun et Hestenes, 1985a ; Halloun et Hestenes, 1985b ; Minstrell, 1982 ; Viennot, 1979), on estime qu'un grand nombre sont profondément ancrées dans leur esprit et difficiles à modifier (Dunbar, Fugelsang et Stein, 2007 ; Posner et collab., 1982 ; Vosniadou, 1992 et 1994). Nous pré- sentons ici quelques découvertes qui ont transformé notre propre perception de la façon dont les étudiants apprennent la physique. Plusieurs des idées que nous soumettons pourraient aussi s'appliquer à d'autres disciplines que ce soit dans un programme préuniversitaire ou technique.
O. Reshef, Y. Li, M. Yin, L. Christakis, D. Inna Vulis, P. Muñoz, S. Kita, M. Loncar, and E. Mazur. 2016. “Phase-Matching in Dirac-Cone-Based Zero-Index Metamaterials.” In . CLEO: Applications and Technology. Publisher's VersionAbstract
Using nonlinear scattering theory, we simulate nonlinear signal generation in 2-dimensional zero-index metamaterials based on a photonic Dirac cone at the Γ point. We observe unique phase- matching in multiple simultaneous directions as the index approaches zero.
2015
2015. “Integrated super-couplers based on zero-index metamaterials.” In . META Conference.Abstract
Zero-refractive-index metamaterials have been proposed as potential candidates for super-coupling applications, where light is confined to sub- diffraction limited length scales on-chip. Such a device allows for efficient coupling between disparate modes and compact 90 degree bends, which are challenging to achieve using dielectric waveguides. We discuss the simulation and fabrication results of all-dielectric on-chip zero-index metamaterial-based couplers. We observe transmission normal to all faces, regardless of the structure's shape, highlighting an unexplored feature of zero index metamaterials for integrated photonics.
Y. Lin, N. Mangan, S. Marbach, T. M. Schneider, G. Deng, S. Zhou, M. Brenner, and E. Mazur. 2015. “Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile.” Appl. Phys. Lett., 106, Pp. 062105–. Publisher's VersionAbstract
Femtosecond-laser hyperdoping of sulfur in silicon typically produces a concentration gradient that results in undesirable inhomogeneous material properties. Using a mathematical model of the doping process, we design a fabrication method consisting of a sequence of laser pulses with varying sulfur concentrations in the atmosphere, which produces hyperdoped silicon with a uniform concentration depth profile. Our measurements of the evolution of the concentration profiles with each laser pulse are consistent with our mathematical model of the doping mechanism, based on classical heat and solute diffusion coupled to the far-from-equilibrium dopant incorporation. The use of optimization methods opens an avenue for creating controllable hyperdoped materials on demand.
M. Gerhard Moebius, K. Vora, S. Kang, P. Munoz, G. Deng, and E. Mazur. 2015. “Direct Laser Writing of 3D Gratings and Diffraction Optics.” In . CLEO: Science and Innovations Laser-Induced Structuring in Bulk Material (SW1K). Publisher's VersionAbstract
We fabricate 3D gratings and diffraction optics using direct laser writing. Diffraction patterns of gratings agree with Laue theory. We demonstrate zone plates for visible wavelengths. Direct laser writing is promising for integrated diffraction optics.
Y. Li, S. Kita, P. Muñoz, O. Reshef, D. Inna Vulis, M. Loncar, and E. Mazur. 2015. “Integrated impedance-matched photonic Dirac-cone metamaterials.” In . META Conference. Publisher's VersionAbstract
We design and fabricate an on-chip Dirac-cone metamaterial with impedance-matched zero index in optical regime. Our metamaterial consists of low-aspect-ratio silicon pillar arrays in an SU-8 matrix clad above and below by gold thin films. This design can serve as an on-chip platform to implement applications of Dirac-cone metamaterials in integrated photonics.
2015. “Integrated super-couplers based on zero-index metamaterials.” In . META Conference.Abstract
Zero-refractive-index metamaterials have been proposed as potential candidates for super-coupling applications, where light is confined to sub- diffraction limited length scales on-chip. Such a device allows for efficient coupling between disparate modes and compact 90 degree bends, which are challenging to achieve using dielectric waveguides. We discuss the simulation and fabrication results of all-dielectric on-chip zero-index metamaterial-based couplers. We observe transmission normal to all faces, regardless of the structure's shape, highlighting an unexplored feature of zero index metamaterials for integrated photonics.
D. Inna Vulis, O. Reshef, P. Muñoz, S. Kita, Y. Li, M. Loncar, and E. Mazur. 2015. “Integrated super-couplers based on zero-index metamaterials.” In . META Conference. Publisher's VersionAbstract
Zero-refractive-index metamaterials have been proposed as potential candidates for super-coupling applications, where light is confined to sub-diffraction limited length scales on-chip. Such a device allows for efficient coupling between disparate modes and compact 90 degree bends, which are challenging to achieve using dielectric waveguides. We discuss the simulation and fabrication results of all-dielectric on- chip zero-index metamaterial-based couplers. We observe transmission normal to all faces, regardless of the structure’s shape, highlighting an unexplored feature of zero index metamaterials for integrated photonics.
P. Muñoz, O. Reshef, G. England, and R. McClellan. 2015. “Inverse Transformation Optics with Realistic Material Parameters.” In . META Conference. Publisher's VersionAbstract
We present a method to generate transformation functions based on a space of achievable material properties. To validate this approach, we consider the range of effective refractive index achievable using silver nanowires in a dielectric background. Given fabrication constraints, we generate a reduced cloaking transformation and confirm its performance using FDTD and FEM simulations. We explore conditions for finding appropriate mappings in restricted parameter spaces, and strategies for optimizing transformations to account for absorption and scattering.
J. Edward Dowd, I. Solano Araujo, and E. Mazur. 2015. “Making sense of confusion: Relating performance, confidence, and self-efficacy to expressions of confusion in an introductory physics class.” Phys. Rev. ST Phys. Educ. Res., 11, Pp. 010107-1–010107-10. Publisher's VersionAbstract
{Although confusion is generally perceived to be negative, educators dating as far back as Socrates, who asked students to question assumptions and wrestle with ideas, have challenged this notion. Can confusion be productive? How should instructors interpret student expressions of confusion? During two semesters of introductory physics that involved Just-in-Time Teaching (JiTT) and research- based reading materials, we evaluated performance on reading assignments while simultaneously measuring students' self-assessment of their confusion over the preclass reading material (N = 137; N[fall] = 106, N[spring] = 88). We examined the relationship between confusion and correctness, confidence in reasoning, and (in the spring) precourse self-efficacy. We find that student expressions of confusion before coming to class are negatively related to correctness on preclass content-related questions, confidence in reasoning on those questions, and self-efficacy, but weakly positively related to final grade when controlling for these factors (β = 0.23

Pages