Nonlinear Nanophotonics

Creation of light-controlling-light devices can be achieved at high speed by way of the optical Kerr effect. This nonlinear optical process changes the effective index of refraction based on the intensity of an optical pulse. Using this, two otherwise non-interacting pulses can influence one another's velocity while traveling through a nonlinear medium, thus a single pulse accumulates a different phase shift than two co-propagating pulses of twice the intensity. Coupling this effect with optical interference, it becomes possible to create all optical logic operations.
Optimizing Anatase-TiO2 Deposition for Low-loss Waveguides, at Photonics West (San Francisco, CA), Tuesday, February 5, 2013:
Polycrystalline anatase-TiO2 thin film possesses desirable properties for on-chip photonic devices that can be used for optic computing, communication, and sensing. Low-loss anatase-TiO2 thin films are necessary for fabricating high quality optical devices. We studied anatase-TiO2 by reactively sputtering titanium metal in an oxygen environment and annealing. By correlating key deposition parameters, including oxygen flow rate, deposition pressure, RF power, and temperature to film morphology and planar waveguiding losses, we aim to understand the dominant source of propagation losses in TiO2... Read more about Optimizing Anatase-TiO2 Deposition for Low-loss Waveguides
Simultaneous multiphoton absorption in rutile (TiO2) across the half-bandgap, at Photonics West 2012 (San Francisco, CA), Thursday, January 26, 2012:
Future optical systems require compact, ultra-fast devices capable of switching and logic across a wide range of wavelengths. To realize this goal, ultrafast nonlinearities must be exploited while maintaining manageable linear losses and nonlinear absorption. We present TiO2 as a nonlinear material to meet these needs. TiO2 is highly transparent for wavelengths > 400 nm and possesses both high linear and nonlinear refractive indices. We measurements the nonlinear index and multiphoton absorption in bulk TiO2 (rutile) using the z-scan technique near the half bandgap (800 nm). Using... Read more about Simultaneous multiphoton absorption in rutile (TiO2) across the half-bandgap
Submicrometer-width TiO2 waveguides, at CLEO (San Jose, CA), Monday, May 7, 2012:
We fabricate submicrometer-width TiO2 strip waveguides and measure optical losses at 633, 780, and 1550 nm. Losses of 30, 13, and 4 dB/cm (respectively) demonstrate that TiO2 is suitable for visible-to-infrared on-chip microphotonic devices.
Impact of sputtering parameters on titanium dioxide thin films for nonlinear nanophotonics, at Photonics West 2011 (San Francisco, CA), Monday, January 24, 2011:
We have identified titanium dioxide (TiO2) as a promising material for on-chip nonlinear optical devices. Its high refractive index and large intrinsic nonlinearity can strongly enhance confinement and non-linear interactions. In this study we optimize our deposition process to lower the linear losses in planar waveguides. We deposit titanium oxide thin films by RF reactive sputtering titanium onto oxidized silicon wafers in an argon/oxygen environment. The oxygen partial pressure in the chamber has a large impact on the deposition rate and the film composition. We investigate the composition... Read more about Impact of sputtering parameters on titanium dioxide thin films for nonlinear nanophotonics
Manipulating light at the nanoscale (Lectures 3–5), at Nano-optics: Principles enabling basic research and applications, Centro Ettore Majorana (Erice), Thursday, July 9, 2015:
In these interactive lectures we explore how light can be manipulated at the nanoscale. We begin by describing optical propagation in ordinary materials and then show how materials can be engineered to achieve a refractive index of zero. These zero-index materials have remarkable properties and can be integrated in photonic circuits. We also give an introduction to nonlinear optics and discuss how zero-index materials can be used to accomplish phase matching in nonlinear optics.

Outline

 

  • Optical properties of materials
  • Dispersion of...
Read more about Manipulating light at the nanoscale (Lectures 3–5)
Nonlinear Nanophotonics, at 12th International Conference on Near-field Optics, Nanophotonics and related Techniques (Donostia - San Sebastian, Spain), Sunday, September 2, 2012:
We discuss the propagation of laser pulses in materials, the basics of nonlinear optical interactions, wave guiding and propagation of modes, fabrication of nanophotonic devices and the use of nonlinear optics at the nanoscale to fabricate optical logic gates.
Thermally managed Z-scan measurements of titanium dioxide thin films, at Photonics West (San Francisco, CA), Thursday, January 27, 2011:
We will present measurements of the complex nonlinear response of sputtered amorphous and polycrystalline titanium dioxide (TiO2) thin films using the thermally managed z-scan technique. Using a Ti:Sapphire laser with 100-fs pulses at 800 nm, we observe ultrafast electronic effects near TiO2's half band-gap. We explore the relation between material processing parameters and observed nonlinearity. In addition, we will discuss the consequences for applications such as all-optical switching.
Maximizing intensity in TiO2 waveguides for nonlinear optics, at Photonics West (San Francisco, California), Wednesday, February 6, 2013:
Titanium dioxide (TiO2) represents an attractive candidate for nonlinear optical devices due its high transparency, large refractive index, and large Kerr nonlinearity. Using electron beam lithography and a liftoff procedure, we can structure both amorphous TiO2 as well as polycrystalline anatase thin films to create photonic devices that exploit the material’s properties in order to do nonlinear optics. Nonlinear optics benefit from long interactions, necessitating large intensities along long waveguide lengths. For this reason, waveguide losses need to be minimized. We study the effects... Read more about Maximizing intensity in TiO2 waveguides for nonlinear optics
TiO2 nanophotonic waveguides for on-chip nonlinear optical devices, at Photonics West 2012 (San Francisco, CA), Monday, January 23, 2012:
Titanium dioxide (TiO2) is a promising material for nonlinear photonic applications. Its large bandgap (> 3 eV) means it is highly transparent and has minimal two photon absorption over a wide wavelength range. TiO2’s high linear and nonlinear refractive indices (> 2 and 25 × that of silica at 800 nm, respectively) allow for high optical confinement in nanophotonic structures, such as waveguides, photonic crystals and resonators, and efficient nonlinear interactions. Thus, TiO2 is a potential platform for on-chip nonlinear optical devices operating across the three traditional... Read more about TiO2 nanophotonic waveguides for on-chip nonlinear optical devices

Pages