Colloquium

Innovating education to educate innovators, at NMES Faculty Education Network – Distinguished Speaker Series, KIng's College, London, UK, Friday, June 25, 2021:

Education is more than just transfer of information, yet that is what is mostly done in large introductory courses -- instructors present material (even though this material might be readily available in printed form) and for students the main purpose of lectures is to take down as many notes as they can. Few students have the ability, motivation, and discipline to synthesize all the information delivered to them. Yet synthesis is perhaps the most important -- and most elusive -- aspect of education. I will show how shifting the focus in lectures from delivering information to...

Read more about Innovating education to educate innovators
Subcellular surgery and nanosurgery, at Chemistry Seminar, Middle Tennessee University, Friday, February 12, 2021

We use femtosecond laser pulses to manipulate sub-cellular structures inside live and fixed cells. Using only a few nanojoules of laser pulse energy, we are able to selectively disrupt individual mitochondria in live bovine capillary epithelial cells, and cleave single actin fibers in the cell cytoskeleton network of fixed human fibro-blast cells. We have also used the technique to micromanipulate the neural network of C. Elegans, a small nematode. Our laser scalpel can snip individual axons without causing any damage to surrounding tissue, allowing us to study the function of individual...

Read more about Subcellular surgery and nanosurgery
Assessment: The Silent Killer of Learning, at Cardiff University, UK, Wednesday, January 27, 2021:
Why is it that stellar students sometimes fail in the workplace while dropouts succeed? One reason is that most, if not all, of our current assessment practices are inauthentic. Just as the lecture focuses on the delivery of information to students, so does assessment often focus on having students regurgitate that same information back to the instructor. Consequently, assessment fails to focus on the skills that are relevant in life in the 21st century. Assessment has been called the "hidden curriculum" as it is an important driver of students' study habits. Unless we rethink our approach to... Read more about Assessment: The Silent Killer of Learning
Innovating Education to Educate Innovators, at North Dakota State University (Fargo, ND), Wednesday, April 5, 2017
Can we teach innovation? Innovation requires whole-brain thinking — right-brain thinking for creativity and imagination, and left-brain thinking for planning and execution. The prevalent approach to education in science and technology focuses on the transfer of information, developing mostly right-brain thinking by stressing copying and reproducing existing ideas rather than generating new ones. I will show how focusing in class on questioning and promoting social interaction leads to deeper learning and independent thinking. I will also present a new approach to get every student to... Read more about Innovating Education to Educate Innovators
Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, North Dakota State University (Fargo, ND), Wednesday, April 5, 2017
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Flat space, deep learning, at Physics Colloquium, Harvard University (Cambridge, MA), Monday, March 28, 2016:
The teaching of physics to engineering students has remained stagnant for close to a century. In this novel team-based, project-based approach, we break the mold by giving students ownership of their learning. This new course has no standard lectures or exams, yet students’ conceptual gains are significantly greater than those obtained in traditional courses. The course blends six best practices to deliver a learning experience that helps students develop important skills, including communication, estimation, problem solving, and team skills, in addition to a solid conceptual understanding... Read more about Flat space, deep learning
Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, UMass Lowell (Lowell, MA), Wednesday, February 24, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Applied Physics Colloquium, Harvard University (Cambridge, MA), Friday, February 12, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at United States Coast Guard Academy (New London, Connecticut), Monday, October 26, 2015:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Subcellular surgery and nanosurgery, at Biophysics Colloquium, Elon University (Elon, NC), Friday, October 16, 2015:
We use femtosecond laser pulses to manipulate sub-cellular structures inside live and fixed cells. Using only a few nanojoules of laser pulse energy, we are able to selectively disrupt individual mitochondria in live bovine capillary epithelial cells, and cleave single actin fibers in the cell cytoskeleton network of fixed human fibro-blast cells. We have also used the technique to micromanipulate the neural network of C. Elegans, a small nematode. Our laser scalpel can snip individual axons without causing any damage to surrounding tissue, allowing us to study the function of individual... Read more about Subcellular surgery and nanosurgery

Pages